基于加速度计的手势识别,使用特征加权naïve贝叶斯分类器和动态时间规整

David Mace, Wei Gao, A. Coskun
{"title":"基于加速度计的手势识别,使用特征加权naïve贝叶斯分类器和动态时间规整","authors":"David Mace, Wei Gao, A. Coskun","doi":"10.1145/2451176.2451211","DOIUrl":null,"url":null,"abstract":"Accelerometer-based gesture recognition is a major area of interest in human-computer interaction. In this paper, we compare two approaches: naïve Bayesian classification with feature separability weighting [1] and dynamic time warping [2]. Algorithms based on these two approaches are introduced and the results are compared. We evaluate both algorithms with four gesture types and five samples from five different people. The gesture identification accuracy for Bayesian classification and dynamic time warping are 97% and 95%, respectively.","PeriodicalId":253850,"journal":{"name":"IUI '13 Companion","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Accelerometer-based hand gesture recognition using feature weighted naïve bayesian classifiers and dynamic time warping\",\"authors\":\"David Mace, Wei Gao, A. Coskun\",\"doi\":\"10.1145/2451176.2451211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accelerometer-based gesture recognition is a major area of interest in human-computer interaction. In this paper, we compare two approaches: naïve Bayesian classification with feature separability weighting [1] and dynamic time warping [2]. Algorithms based on these two approaches are introduced and the results are compared. We evaluate both algorithms with four gesture types and five samples from five different people. The gesture identification accuracy for Bayesian classification and dynamic time warping are 97% and 95%, respectively.\",\"PeriodicalId\":253850,\"journal\":{\"name\":\"IUI '13 Companion\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IUI '13 Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2451176.2451211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUI '13 Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2451176.2451211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

基于加速度计的手势识别是人机交互研究的一个重要领域。在本文中,我们比较了两种方法:naïve基于特征可分性加权的贝叶斯分类[1]和动态时间翘曲[2]。介绍了基于这两种方法的算法,并对结果进行了比较。我们用四种手势类型和来自五个不同人的五个样本来评估这两种算法。贝叶斯分类和动态时间规整的手势识别准确率分别为97%和95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerometer-based hand gesture recognition using feature weighted naïve bayesian classifiers and dynamic time warping
Accelerometer-based gesture recognition is a major area of interest in human-computer interaction. In this paper, we compare two approaches: naïve Bayesian classification with feature separability weighting [1] and dynamic time warping [2]. Algorithms based on these two approaches are introduced and the results are compared. We evaluate both algorithms with four gesture types and five samples from five different people. The gesture identification accuracy for Bayesian classification and dynamic time warping are 97% and 95%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信