硅太阳能电池表面纹理组合的高效光学分析

N. Tucher, Johannes Eisenlohr, Peter Kiefel, H. Gebrewold, O. Höhn, H. Hauser, C. Müller, J. Goldschmidt, B. Bläsi
{"title":"硅太阳能电池表面纹理组合的高效光学分析","authors":"N. Tucher, Johannes Eisenlohr, Peter Kiefel, H. Gebrewold, O. Höhn, H. Hauser, C. Müller, J. Goldschmidt, B. Bläsi","doi":"10.1117/12.2228294","DOIUrl":null,"url":null,"abstract":"Surface textures can significantly improve anti-reflective and light trapping properties of silicon solar cells. Combining standard pyramidal front side textures with scattering or diffractive rear side textures has the potential to further increase the light path length inside the silicon and thereby increase the solar cell efficiency. In this work we introduce the OPTOS (Optical Properties of Textured Optical Sheets) simulation formalism and apply it to the modelling of silicon solar cells with different surface textures at front and rear side. OPTOS is a matrix-based method that allows for the computationally-efficient calculation of non-coherent light propagation within textured solar cells, featuring multiple textures that may operate in different optical regimes. After calculating redistribution matrices for each individual surface texture with the most appropriate technique, optical properties like angle dependent reflectance, transmittance or absorptance can be determined via matrix multiplications. Using OPTOS, we demonstrate for example that the integration of a diffractive grating at the rear side of solar cells with random pyramids at the front results in an absorptance gain that corresponds to a photocurrent density enhancement of 0.73 mA/cm2 for a 250 μm thick cell. The re-usability of matrices enables the investigation of different solar cell thicknesses within minutes. For thicknesses down to 50 μm the simulated gain increases up to 1.22 mA/cm2. The OPTOS formalism is furthermore not restricted with respect to the number of textured interfaces. By combining two or more textured sheets to effective interfaces, it is possible to optically model a complete photovoltaic module including EVA and potentially textured glass layers with one calculation tool.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient optical analysis of surface texture combinations for silicon solar cells\",\"authors\":\"N. Tucher, Johannes Eisenlohr, Peter Kiefel, H. Gebrewold, O. Höhn, H. Hauser, C. Müller, J. Goldschmidt, B. Bläsi\",\"doi\":\"10.1117/12.2228294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface textures can significantly improve anti-reflective and light trapping properties of silicon solar cells. Combining standard pyramidal front side textures with scattering or diffractive rear side textures has the potential to further increase the light path length inside the silicon and thereby increase the solar cell efficiency. In this work we introduce the OPTOS (Optical Properties of Textured Optical Sheets) simulation formalism and apply it to the modelling of silicon solar cells with different surface textures at front and rear side. OPTOS is a matrix-based method that allows for the computationally-efficient calculation of non-coherent light propagation within textured solar cells, featuring multiple textures that may operate in different optical regimes. After calculating redistribution matrices for each individual surface texture with the most appropriate technique, optical properties like angle dependent reflectance, transmittance or absorptance can be determined via matrix multiplications. Using OPTOS, we demonstrate for example that the integration of a diffractive grating at the rear side of solar cells with random pyramids at the front results in an absorptance gain that corresponds to a photocurrent density enhancement of 0.73 mA/cm2 for a 250 μm thick cell. The re-usability of matrices enables the investigation of different solar cell thicknesses within minutes. For thicknesses down to 50 μm the simulated gain increases up to 1.22 mA/cm2. The OPTOS formalism is furthermore not restricted with respect to the number of textured interfaces. By combining two or more textured sheets to effective interfaces, it is possible to optically model a complete photovoltaic module including EVA and potentially textured glass layers with one calculation tool.\",\"PeriodicalId\":285152,\"journal\":{\"name\":\"SPIE Photonics Europe\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Photonics Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2228294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Photonics Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2228294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

表面纹理可以显著提高硅太阳能电池的抗反射和捕光性能。将标准锥体正面纹理与散射或衍射背面纹理相结合,有可能进一步增加硅内部的光路长度,从而提高太阳能电池的效率。本文介绍了OPTOS (Optical Properties of Textured Optical Sheets)仿真模型,并将其应用于具有不同前后表面纹理的硅太阳能电池的建模。OPTOS是一种基于矩阵的方法,允许在纹理太阳能电池中计算非相干光传播的高效计算,具有多种纹理,可以在不同的光学体制下工作。在使用最合适的技术计算每个单独表面纹理的再分配矩阵之后,可以通过矩阵乘法确定角度相关反射率,透射率或吸收率等光学特性。例如,利用OPTOS,我们证明了太阳能电池背面的衍射光栅与前面的随机金字塔的集成导致吸收增益,对应于250 μm厚电池的光电流密度增强0.73 mA/cm2。矩阵的可重用性可以在几分钟内研究不同的太阳能电池厚度。对于低至50 μm的厚度,模拟增益增加到1.22 mA/cm2。此外,OPTOS的形式化不受纹理接口数量的限制。通过将两个或更多的纹理片结合到有效界面,可以用一个计算工具对包括EVA和潜在纹理玻璃层在内的完整光伏组件进行光学建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient optical analysis of surface texture combinations for silicon solar cells
Surface textures can significantly improve anti-reflective and light trapping properties of silicon solar cells. Combining standard pyramidal front side textures with scattering or diffractive rear side textures has the potential to further increase the light path length inside the silicon and thereby increase the solar cell efficiency. In this work we introduce the OPTOS (Optical Properties of Textured Optical Sheets) simulation formalism and apply it to the modelling of silicon solar cells with different surface textures at front and rear side. OPTOS is a matrix-based method that allows for the computationally-efficient calculation of non-coherent light propagation within textured solar cells, featuring multiple textures that may operate in different optical regimes. After calculating redistribution matrices for each individual surface texture with the most appropriate technique, optical properties like angle dependent reflectance, transmittance or absorptance can be determined via matrix multiplications. Using OPTOS, we demonstrate for example that the integration of a diffractive grating at the rear side of solar cells with random pyramids at the front results in an absorptance gain that corresponds to a photocurrent density enhancement of 0.73 mA/cm2 for a 250 μm thick cell. The re-usability of matrices enables the investigation of different solar cell thicknesses within minutes. For thicknesses down to 50 μm the simulated gain increases up to 1.22 mA/cm2. The OPTOS formalism is furthermore not restricted with respect to the number of textured interfaces. By combining two or more textured sheets to effective interfaces, it is possible to optically model a complete photovoltaic module including EVA and potentially textured glass layers with one calculation tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信