多媒体数据库中使用多种表示的有效相似度搜索

H. Kriegel, Peer Kröger, Peter Kunath, A. Pryakhin
{"title":"多媒体数据库中使用多种表示的有效相似度搜索","authors":"H. Kriegel, Peer Kröger, Peter Kunath, A. Pryakhin","doi":"10.1109/MMMC.2006.1651355","DOIUrl":null,"url":null,"abstract":"Similarity search in large multimedia databases is an important issue in nowadays multimedia environment. Multimedia objects such as music videos usually consist of multiple representations such as audio or video features. Since each representation may be of significantly different quality for a given multimedia object, similarity search methods could greatly benefit from taking these multiple representations into account. An intelligent similarity search technique should consider all available representations of the database objects and should automatically choose the best representations), i.e. those representations that model the object in the best possible way. In this paper, we propose a novel approach for similarity search in multimedia databases taking multiple representations of multimedia objects into account. In particular, we present weighting functions to rate the significance of a feature of each representation for a given database object. This allows weighting each representation during query processing. A broad experimental evaluation shows the suitability and the effectiveness of multi-represented similarity search in video databases","PeriodicalId":107275,"journal":{"name":"2006 12th International Multi-Media Modelling Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Effective similarity search in multimedia databases using multiple representations\",\"authors\":\"H. Kriegel, Peer Kröger, Peter Kunath, A. Pryakhin\",\"doi\":\"10.1109/MMMC.2006.1651355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Similarity search in large multimedia databases is an important issue in nowadays multimedia environment. Multimedia objects such as music videos usually consist of multiple representations such as audio or video features. Since each representation may be of significantly different quality for a given multimedia object, similarity search methods could greatly benefit from taking these multiple representations into account. An intelligent similarity search technique should consider all available representations of the database objects and should automatically choose the best representations), i.e. those representations that model the object in the best possible way. In this paper, we propose a novel approach for similarity search in multimedia databases taking multiple representations of multimedia objects into account. In particular, we present weighting functions to rate the significance of a feature of each representation for a given database object. This allows weighting each representation during query processing. A broad experimental evaluation shows the suitability and the effectiveness of multi-represented similarity search in video databases\",\"PeriodicalId\":107275,\"journal\":{\"name\":\"2006 12th International Multi-Media Modelling Conference\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 12th International Multi-Media Modelling Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMMC.2006.1651355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 12th International Multi-Media Modelling Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMMC.2006.1651355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

大型多媒体数据库的相似度搜索是当今多媒体环境下的一个重要问题。像音乐视频这样的多媒体对象通常由多种表现形式(如音频或视频特征)组成。由于对于给定的多媒体对象,每种表示可能具有显著不同的质量,因此考虑到这些多种表示,相似性搜索方法可以大大受益。智能相似性搜索技术应该考虑数据库对象的所有可用表示,并自动选择最佳表示,即那些以最佳方式对对象建模的表示。在本文中,我们提出了一种考虑多媒体对象的多种表示的多媒体数据库相似度搜索的新方法。特别地,我们提出了加权函数来评价给定数据库对象的每个表示的特征的重要性。这允许在查询处理期间对每个表示进行加权。广泛的实验评估表明了多表示相似度搜索在视频数据库中的适用性和有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective similarity search in multimedia databases using multiple representations
Similarity search in large multimedia databases is an important issue in nowadays multimedia environment. Multimedia objects such as music videos usually consist of multiple representations such as audio or video features. Since each representation may be of significantly different quality for a given multimedia object, similarity search methods could greatly benefit from taking these multiple representations into account. An intelligent similarity search technique should consider all available representations of the database objects and should automatically choose the best representations), i.e. those representations that model the object in the best possible way. In this paper, we propose a novel approach for similarity search in multimedia databases taking multiple representations of multimedia objects into account. In particular, we present weighting functions to rate the significance of a feature of each representation for a given database object. This allows weighting each representation during query processing. A broad experimental evaluation shows the suitability and the effectiveness of multi-represented similarity search in video databases
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信