一种计算球体结合部体积和表面的算法。申请溶剂化壳

V. Voloshin, A. Anikeenko, N. N. Medvedev, A. Geiger
{"title":"一种计算球体结合部体积和表面的算法。申请溶剂化壳","authors":"V. Voloshin, A. Anikeenko, N. N. Medvedev, A. Geiger","doi":"10.1109/ISVD.2011.30","DOIUrl":null,"url":null,"abstract":"A simple algorithm for the calculation of the volume and surface area of a union of spheres of different radii is presented. It is based on the ideas published in S. Sastry et al, Phys. Rev. E, v.56, pp.5524-5532, 1997 [1], where they computed volume and surface of interatomic voids in simple liquids. They proposed to work with the intersection of Delaunay simplexes and the corresponding Voronoi polyhedra. Analytical formulas for volume and surface area were derived for the atoms occupying this region. This could be achieved without explicit calculation of multiple intersections of the overlapping atoms. We have implemented such ideas for the calculation of the occupied volume and its surface inside the polyhedra defined by power Voronoi diagram. This allows calculating the required values for spheres with different radii. Simple analytical formulas are also valid in this case. We applied our algorithm to the calculation of the solvation shell volume for complex solute molecules in molecular dynamics models of solutions. A comparison of our program with the available implementation of the certified algorithm for unions of spheres by F. Cazals et al. (ACM Trans. Math. Soft. 38 (1), 2011) [2] shows coincidence of the results.","PeriodicalId":152151,"journal":{"name":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Algorithm for the Calculation of Volume and Surface of Unions of Spheres. Application for Solvation Shells\",\"authors\":\"V. Voloshin, A. Anikeenko, N. N. Medvedev, A. Geiger\",\"doi\":\"10.1109/ISVD.2011.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple algorithm for the calculation of the volume and surface area of a union of spheres of different radii is presented. It is based on the ideas published in S. Sastry et al, Phys. Rev. E, v.56, pp.5524-5532, 1997 [1], where they computed volume and surface of interatomic voids in simple liquids. They proposed to work with the intersection of Delaunay simplexes and the corresponding Voronoi polyhedra. Analytical formulas for volume and surface area were derived for the atoms occupying this region. This could be achieved without explicit calculation of multiple intersections of the overlapping atoms. We have implemented such ideas for the calculation of the occupied volume and its surface inside the polyhedra defined by power Voronoi diagram. This allows calculating the required values for spheres with different radii. Simple analytical formulas are also valid in this case. We applied our algorithm to the calculation of the solvation shell volume for complex solute molecules in molecular dynamics models of solutions. A comparison of our program with the available implementation of the certified algorithm for unions of spheres by F. Cazals et al. (ACM Trans. Math. Soft. 38 (1), 2011) [2] shows coincidence of the results.\",\"PeriodicalId\":152151,\"journal\":{\"name\":\"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVD.2011.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2011.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种计算不同半径球并集的体积和表面积的简单算法。它是基于S.萨斯特里等人发表在《物理学》杂志上的观点。[1],用数学方法计算了简单液体中原子间空隙的体积和表面积。他们建议用Delaunay简单体和相应的Voronoi多面体的交集来研究。导出了占据这一区域的原子的体积和表面积的解析公式。这可以在不明确计算重叠原子的多个交叉点的情况下实现。我们已经实现了这样的想法,用于计算被占用的体积及其在多面体内的表面,由power Voronoi图定义。这允许计算具有不同半径的球体所需的值。简单的解析公式在这种情况下也是有效的。我们将该算法应用于溶液分子动力学模型中复杂溶质分子的溶剂化壳体积的计算。我们的程序与F. Cazals等人(ACM Trans.)的球体并的认证算法的可用实现的比较。数学。软,38(1),2011)[2]显示了结果的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algorithm for the Calculation of Volume and Surface of Unions of Spheres. Application for Solvation Shells
A simple algorithm for the calculation of the volume and surface area of a union of spheres of different radii is presented. It is based on the ideas published in S. Sastry et al, Phys. Rev. E, v.56, pp.5524-5532, 1997 [1], where they computed volume and surface of interatomic voids in simple liquids. They proposed to work with the intersection of Delaunay simplexes and the corresponding Voronoi polyhedra. Analytical formulas for volume and surface area were derived for the atoms occupying this region. This could be achieved without explicit calculation of multiple intersections of the overlapping atoms. We have implemented such ideas for the calculation of the occupied volume and its surface inside the polyhedra defined by power Voronoi diagram. This allows calculating the required values for spheres with different radii. Simple analytical formulas are also valid in this case. We applied our algorithm to the calculation of the solvation shell volume for complex solute molecules in molecular dynamics models of solutions. A comparison of our program with the available implementation of the certified algorithm for unions of spheres by F. Cazals et al. (ACM Trans. Math. Soft. 38 (1), 2011) [2] shows coincidence of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信