低成本公平横向数据重用所需的激励措施

R. Maio, A. Chaintreau
{"title":"低成本公平横向数据重用所需的激励措施","authors":"R. Maio, A. Chaintreau","doi":"10.1145/3412815.3416890","DOIUrl":null,"url":null,"abstract":"A central goal of algorithmic fairness is to build systems with fairness properties that compose gracefully. A major effort and step towards this goal in data science has been the development offair representations which guarantee demographic parity under sequential composition by imposing ademographic secrecy constraint. In this work, we elucidate limitations of demographically secret fair representations and propose a fresh approach to potentially overcome them by incorporating information about parties' incentives into fairness interventions. Specifically, we show that in a stylized model, it is possible to relax demographic secrecy to obtainincentive-compatible representations, where rational parties obtain exponentially greater utilities vis-à-vis any demographically secret representation and satisfy demographic parity. These substantial gains are recovered not from the well-knowncost of fairness, but rather from acost of demographic secrecy which we formalize and quantify for the first time. We further show that the sequential composition property of demographically secret representations is not robust to aggregation. Our results open several new directions for research in fair composition, fair machine learning and algorithmic fairness.","PeriodicalId":176130,"journal":{"name":"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incentives Needed for Low-Cost Fair Lateral Data Reuse\",\"authors\":\"R. Maio, A. Chaintreau\",\"doi\":\"10.1145/3412815.3416890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A central goal of algorithmic fairness is to build systems with fairness properties that compose gracefully. A major effort and step towards this goal in data science has been the development offair representations which guarantee demographic parity under sequential composition by imposing ademographic secrecy constraint. In this work, we elucidate limitations of demographically secret fair representations and propose a fresh approach to potentially overcome them by incorporating information about parties' incentives into fairness interventions. Specifically, we show that in a stylized model, it is possible to relax demographic secrecy to obtainincentive-compatible representations, where rational parties obtain exponentially greater utilities vis-à-vis any demographically secret representation and satisfy demographic parity. These substantial gains are recovered not from the well-knowncost of fairness, but rather from acost of demographic secrecy which we formalize and quantify for the first time. We further show that the sequential composition property of demographically secret representations is not robust to aggregation. Our results open several new directions for research in fair composition, fair machine learning and algorithmic fairness.\",\"PeriodicalId\":176130,\"journal\":{\"name\":\"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3412815.3416890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3412815.3416890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

算法公平性的中心目标是构建具有优雅组合公平性属性的系统。在数据科学中,实现这一目标的主要努力和步骤是发展公平表示,通过施加人口保密约束来保证顺序构成下的人口平等。在这项工作中,我们阐明了人口统计学上秘密公平陈述的局限性,并提出了一种新的方法,通过将有关各方激励的信息纳入公平干预来潜在地克服它们。具体来说,我们表明,在一个风格化的模型中,有可能放松人口保密以获得激励相容的表示,其中理性各方获得指数级的效用大于-à-vis任何人口保密表示并满足人口平价。这些可观的收益不是来自众所周知的公平成本,而是来自我们首次正式确定和量化的人口保密成本。我们进一步证明了人口统计秘密表示的顺序组合特性对聚合不具有鲁棒性。我们的研究结果为公平构成、公平机器学习和算法公平的研究开辟了几个新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incentives Needed for Low-Cost Fair Lateral Data Reuse
A central goal of algorithmic fairness is to build systems with fairness properties that compose gracefully. A major effort and step towards this goal in data science has been the development offair representations which guarantee demographic parity under sequential composition by imposing ademographic secrecy constraint. In this work, we elucidate limitations of demographically secret fair representations and propose a fresh approach to potentially overcome them by incorporating information about parties' incentives into fairness interventions. Specifically, we show that in a stylized model, it is possible to relax demographic secrecy to obtainincentive-compatible representations, where rational parties obtain exponentially greater utilities vis-à-vis any demographically secret representation and satisfy demographic parity. These substantial gains are recovered not from the well-knowncost of fairness, but rather from acost of demographic secrecy which we formalize and quantify for the first time. We further show that the sequential composition property of demographically secret representations is not robust to aggregation. Our results open several new directions for research in fair composition, fair machine learning and algorithmic fairness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信