三维物体分类的自动类选择和原型设计

Raghavendra Donamukkala, Daniel F. Huber, A. Kapuria, M. Hebert
{"title":"三维物体分类的自动类选择和原型设计","authors":"Raghavendra Donamukkala, Daniel F. Huber, A. Kapuria, M. Hebert","doi":"10.1109/3DIM.2005.22","DOIUrl":null,"url":null,"abstract":"Most research on 3-D object classification and recognition focuses on recognition of objects in 3-D scenes from a small database of known 3-D models. Such an approach does not scale well to large databases of objects and does not generalize well to unknown (but similar) object classification. This paper presents two ideas to address these problems (i) class selection, i.e., grouping similar objects into classes (ii) class prototyping, i.e., exploiting common structure within classes to represent the classes. At run time matching a query against the prototypes is sufficient for classification. This approach will not only reduce the retrieval time but also will help increase the generalizing power of the classification algorithm. Objects are segmented into classes automatically using an agglomerative clustering algorithm. Prototypes from these classes are extracted using one of three class prototyping algorithms. Experimental results demonstrate the effectiveness of the two steps in speeding up the classification process without sacrificing accuracy.","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Automatic Class Selection and Prototyping for 3-D Object Classification\",\"authors\":\"Raghavendra Donamukkala, Daniel F. Huber, A. Kapuria, M. Hebert\",\"doi\":\"10.1109/3DIM.2005.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most research on 3-D object classification and recognition focuses on recognition of objects in 3-D scenes from a small database of known 3-D models. Such an approach does not scale well to large databases of objects and does not generalize well to unknown (but similar) object classification. This paper presents two ideas to address these problems (i) class selection, i.e., grouping similar objects into classes (ii) class prototyping, i.e., exploiting common structure within classes to represent the classes. At run time matching a query against the prototypes is sufficient for classification. This approach will not only reduce the retrieval time but also will help increase the generalizing power of the classification algorithm. Objects are segmented into classes automatically using an agglomerative clustering algorithm. Prototypes from these classes are extracted using one of three class prototyping algorithms. Experimental results demonstrate the effectiveness of the two steps in speeding up the classification process without sacrificing accuracy.\",\"PeriodicalId\":170883,\"journal\":{\"name\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIM.2005.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

大多数关于三维物体分类和识别的研究都集中在从已知三维模型的小数据库中识别三维场景中的物体。这种方法不能很好地扩展到大型对象数据库,也不能很好地推广到未知(但相似)的对象分类。本文提出了两个解决这些问题的思路:(i)类选择,即将相似的对象分组到类中;(ii)类原型,即利用类中的公共结构来表示类。在运行时,针对原型匹配查询就足以进行分类。这种方法不仅减少了检索时间,而且有助于提高分类算法的泛化能力。使用聚合聚类算法将对象自动分割为类。使用三种类原型算法中的一种从这些类中提取原型。实验结果表明,这两步在不牺牲准确率的情况下,可以有效地加快分类过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Class Selection and Prototyping for 3-D Object Classification
Most research on 3-D object classification and recognition focuses on recognition of objects in 3-D scenes from a small database of known 3-D models. Such an approach does not scale well to large databases of objects and does not generalize well to unknown (but similar) object classification. This paper presents two ideas to address these problems (i) class selection, i.e., grouping similar objects into classes (ii) class prototyping, i.e., exploiting common structure within classes to represent the classes. At run time matching a query against the prototypes is sufficient for classification. This approach will not only reduce the retrieval time but also will help increase the generalizing power of the classification algorithm. Objects are segmented into classes automatically using an agglomerative clustering algorithm. Prototypes from these classes are extracted using one of three class prototyping algorithms. Experimental results demonstrate the effectiveness of the two steps in speeding up the classification process without sacrificing accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信