{"title":"数字零售中顾客行为神经网络嵌入的预处理准则研究","authors":"Douglas Cirqueira, M. Helfert, Marija Bezbradica","doi":"10.1145/3386164.3389092","DOIUrl":null,"url":null,"abstract":"Shopping transactions in digital retailing platforms enable retailers to understand customers' needs for providing personalized experiences. Researchers started modeling transaction data through neural network embedding, which enables unsupervised learning of contextual similarities between attributes in shopping transactions. However, every study brings different approaches for embedding customer's transactions, and clear preprocessing guidelines are missing. This paper reviews the recent literature of neural embedding for customer behavior and brings three main contributions. First, we provide a set of guidelines for preprocessing and modeling consumer transaction data to learn neural network embeddings. Second, it is introduced a multi-task Long Short-Term Memory Network to evaluate the guidelines proposed through the task of purchase behavior prediction. Third, we present a multi-contextual visualization of customer behavior embeddings, and its usefulness for purchase prediction and fraud detection applications. Results achieved illustrate accuracies above 40%, 60%, and 80% for predicting the next days, hours, and products purchased for some customers in a dataset composed of online grocery shopping transactions.","PeriodicalId":231209,"journal":{"name":"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Towards Preprocessing Guidelines for Neural Network Embedding of Customer Behavior in Digital Retail\",\"authors\":\"Douglas Cirqueira, M. Helfert, Marija Bezbradica\",\"doi\":\"10.1145/3386164.3389092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shopping transactions in digital retailing platforms enable retailers to understand customers' needs for providing personalized experiences. Researchers started modeling transaction data through neural network embedding, which enables unsupervised learning of contextual similarities between attributes in shopping transactions. However, every study brings different approaches for embedding customer's transactions, and clear preprocessing guidelines are missing. This paper reviews the recent literature of neural embedding for customer behavior and brings three main contributions. First, we provide a set of guidelines for preprocessing and modeling consumer transaction data to learn neural network embeddings. Second, it is introduced a multi-task Long Short-Term Memory Network to evaluate the guidelines proposed through the task of purchase behavior prediction. Third, we present a multi-contextual visualization of customer behavior embeddings, and its usefulness for purchase prediction and fraud detection applications. Results achieved illustrate accuracies above 40%, 60%, and 80% for predicting the next days, hours, and products purchased for some customers in a dataset composed of online grocery shopping transactions.\",\"PeriodicalId\":231209,\"journal\":{\"name\":\"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386164.3389092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386164.3389092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards Preprocessing Guidelines for Neural Network Embedding of Customer Behavior in Digital Retail
Shopping transactions in digital retailing platforms enable retailers to understand customers' needs for providing personalized experiences. Researchers started modeling transaction data through neural network embedding, which enables unsupervised learning of contextual similarities between attributes in shopping transactions. However, every study brings different approaches for embedding customer's transactions, and clear preprocessing guidelines are missing. This paper reviews the recent literature of neural embedding for customer behavior and brings three main contributions. First, we provide a set of guidelines for preprocessing and modeling consumer transaction data to learn neural network embeddings. Second, it is introduced a multi-task Long Short-Term Memory Network to evaluate the guidelines proposed through the task of purchase behavior prediction. Third, we present a multi-contextual visualization of customer behavior embeddings, and its usefulness for purchase prediction and fraud detection applications. Results achieved illustrate accuracies above 40%, 60%, and 80% for predicting the next days, hours, and products purchased for some customers in a dataset composed of online grocery shopping transactions.