用于交互式电影灯光设计的快速照明引擎

Reid Gershbein, P. Hanrahan
{"title":"用于交互式电影灯光设计的快速照明引擎","authors":"Reid Gershbein, P. Hanrahan","doi":"10.1145/344779.344938","DOIUrl":null,"url":null,"abstract":"We present new techniques for interactive cinematic lighting design of complex scenes that use procedural shaders. Deep-framebuffers are used to store the geometric and optical information of the visible surfaces of an image. The geometric information is represented as collections of oriented points, and the optical information is represented as bi-directional reflection distribution functions, or BRDFs. The BRDFs are generated by procedurally defined surface texturing functions that spatially vary the surfaces' appearances. The deep-framebuffer information is rendered using a multi-pass algorithm built on the OpenGL graphics pipeline. In order to handle both physically-correct as well as non-realistic reflection models used in the film industry, we factor the BRDF into independent components that map onto both the lighting and texturing units of the graphics hardware. A similar factorization is used to control the lighting distribution. Using these techniques, lighting calculations can be evaluated 2500 times faster than previous methods. This allows lighting changes to be rendered at rates of 20Hz in static environments that contain millions of objects of with dozens of unique procedurally defined surface properties and scores of lights.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"A fast relighting engine for interactive cinematic lighting design\",\"authors\":\"Reid Gershbein, P. Hanrahan\",\"doi\":\"10.1145/344779.344938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present new techniques for interactive cinematic lighting design of complex scenes that use procedural shaders. Deep-framebuffers are used to store the geometric and optical information of the visible surfaces of an image. The geometric information is represented as collections of oriented points, and the optical information is represented as bi-directional reflection distribution functions, or BRDFs. The BRDFs are generated by procedurally defined surface texturing functions that spatially vary the surfaces' appearances. The deep-framebuffer information is rendered using a multi-pass algorithm built on the OpenGL graphics pipeline. In order to handle both physically-correct as well as non-realistic reflection models used in the film industry, we factor the BRDF into independent components that map onto both the lighting and texturing units of the graphics hardware. A similar factorization is used to control the lighting distribution. Using these techniques, lighting calculations can be evaluated 2500 times faster than previous methods. This allows lighting changes to be rendered at rates of 20Hz in static environments that contain millions of objects of with dozens of unique procedurally defined surface properties and scores of lights.\",\"PeriodicalId\":269415,\"journal\":{\"name\":\"Proceedings of the 27th annual conference on Computer graphics and interactive techniques\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/344779.344938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/344779.344938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

我们提出了使用程序着色器的复杂场景的交互式电影灯光设计的新技术。深帧缓冲区用于存储图像可见表面的几何和光学信息。几何信息表示为定向点的集合,光学信息表示为双向反射分布函数(brdf)。brdf是由程序定义的表面纹理函数生成的,该函数在空间上改变表面的外观。使用基于OpenGL图形管道的多通道算法渲染深度帧缓冲信息。为了处理电影行业中使用的物理正确以及非现实的反射模型,我们将BRDF分解为映射到图形硬件的照明和纹理单元的独立组件。一个类似的分解被用来控制光照分布。使用这些技术,照明计算可以比以前的方法快2500倍。这允许在静态环境中以20Hz的速率渲染光照变化,其中包含数百万个具有数十个独特的程序定义表面属性和数十个灯光的对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast relighting engine for interactive cinematic lighting design
We present new techniques for interactive cinematic lighting design of complex scenes that use procedural shaders. Deep-framebuffers are used to store the geometric and optical information of the visible surfaces of an image. The geometric information is represented as collections of oriented points, and the optical information is represented as bi-directional reflection distribution functions, or BRDFs. The BRDFs are generated by procedurally defined surface texturing functions that spatially vary the surfaces' appearances. The deep-framebuffer information is rendered using a multi-pass algorithm built on the OpenGL graphics pipeline. In order to handle both physically-correct as well as non-realistic reflection models used in the film industry, we factor the BRDF into independent components that map onto both the lighting and texturing units of the graphics hardware. A similar factorization is used to control the lighting distribution. Using these techniques, lighting calculations can be evaluated 2500 times faster than previous methods. This allows lighting changes to be rendered at rates of 20Hz in static environments that contain millions of objects of with dozens of unique procedurally defined surface properties and scores of lights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信