推理元模型:利用贝叶斯网络实现鲁棒信息融合

G. Pavlin, J. Nunnink
{"title":"推理元模型:利用贝叶斯网络实现鲁棒信息融合","authors":"G. Pavlin, J. Nunnink","doi":"10.1109/ICIF.2006.301817","DOIUrl":null,"url":null,"abstract":"This paper discusses the properties of Bayesian networks (BNs) in the context of accurate state estimation. We focus on a relevant class of problems where state estimation can be viewed as a classification of possible states based on the fusion of heterogeneous and noisy information. We introduce the inference meta model (IMM), a coarse runtime perspective on the inference processes which facilitates the analysis of the state estimation with BNs. By making coarse and realistic assumptions, we show that such inference can be very robust and has asymptotic properties regarding the fusion accuracy, even if we use models and evidence associated with significant uncertainties. Moreover, the IMM provides guidance for the development of (i) robust fusion systems and (ii) methods for runtime detection of potentially misleading fusion results","PeriodicalId":248061,"journal":{"name":"2006 9th International Conference on Information Fusion","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Inference Meta Models: Towards Robust Information Fusion with Bayesian Networks\",\"authors\":\"G. Pavlin, J. Nunnink\",\"doi\":\"10.1109/ICIF.2006.301817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the properties of Bayesian networks (BNs) in the context of accurate state estimation. We focus on a relevant class of problems where state estimation can be viewed as a classification of possible states based on the fusion of heterogeneous and noisy information. We introduce the inference meta model (IMM), a coarse runtime perspective on the inference processes which facilitates the analysis of the state estimation with BNs. By making coarse and realistic assumptions, we show that such inference can be very robust and has asymptotic properties regarding the fusion accuracy, even if we use models and evidence associated with significant uncertainties. Moreover, the IMM provides guidance for the development of (i) robust fusion systems and (ii) methods for runtime detection of potentially misleading fusion results\",\"PeriodicalId\":248061,\"journal\":{\"name\":\"2006 9th International Conference on Information Fusion\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 9th International Conference on Information Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2006.301817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2006.301817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

本文在精确状态估计的背景下讨论了贝叶斯网络的性质。我们关注一类相关的问题,其中状态估计可以看作是基于异构和噪声信息融合的可能状态的分类。我们引入了推理元模型(IMM),这是一种对推理过程的粗略运行时视角,有助于用bp网络分析状态估计。通过做出粗糙和现实的假设,我们表明,即使我们使用与显著不确定性相关的模型和证据,这种推断也可以非常稳健,并且在融合精度方面具有渐近特性。此外,IMM为以下方面的发展提供了指导:(i)稳健的融合系统和(ii)运行时检测潜在误导性融合结果的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inference Meta Models: Towards Robust Information Fusion with Bayesian Networks
This paper discusses the properties of Bayesian networks (BNs) in the context of accurate state estimation. We focus on a relevant class of problems where state estimation can be viewed as a classification of possible states based on the fusion of heterogeneous and noisy information. We introduce the inference meta model (IMM), a coarse runtime perspective on the inference processes which facilitates the analysis of the state estimation with BNs. By making coarse and realistic assumptions, we show that such inference can be very robust and has asymptotic properties regarding the fusion accuracy, even if we use models and evidence associated with significant uncertainties. Moreover, the IMM provides guidance for the development of (i) robust fusion systems and (ii) methods for runtime detection of potentially misleading fusion results
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信