支持向量机的程序分析

Andrea Flexeder, Matthias Putz, T. Runkler
{"title":"支持向量机的程序分析","authors":"Andrea Flexeder, Matthias Putz, T. Runkler","doi":"10.1109/IJCNN.2012.6252469","DOIUrl":null,"url":null,"abstract":"The prerequisite for practicable program analysis is the identification of the individual procedures, which correspond to individual stack frames. We present how machine learning techniques can be used in the setting of program analysis in order to find these stack frames. This combination of machine learning and abstract interpretation-based analysis provides the first fully automatic analysis framework for executables. Our approach can also be applied to identify library functions or malicious behaviour in a given piece of assembly.","PeriodicalId":287844,"journal":{"name":"The 2012 International Joint Conference on Neural Networks (IJCNN)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Support vector machines for program analysis\",\"authors\":\"Andrea Flexeder, Matthias Putz, T. Runkler\",\"doi\":\"10.1109/IJCNN.2012.6252469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prerequisite for practicable program analysis is the identification of the individual procedures, which correspond to individual stack frames. We present how machine learning techniques can be used in the setting of program analysis in order to find these stack frames. This combination of machine learning and abstract interpretation-based analysis provides the first fully automatic analysis framework for executables. Our approach can also be applied to identify library functions or malicious behaviour in a given piece of assembly.\",\"PeriodicalId\":287844,\"journal\":{\"name\":\"The 2012 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2012 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2012.6252469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2012 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2012.6252469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可行的程序分析的先决条件是识别对应于单个堆栈帧的单个过程。我们介绍了如何在程序分析的设置中使用机器学习技术来找到这些堆栈框架。这种机器学习和基于抽象解释的分析的结合为可执行文件提供了第一个全自动分析框架。我们的方法还可以用于识别给定程序集中的库函数或恶意行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support vector machines for program analysis
The prerequisite for practicable program analysis is the identification of the individual procedures, which correspond to individual stack frames. We present how machine learning techniques can be used in the setting of program analysis in order to find these stack frames. This combination of machine learning and abstract interpretation-based analysis provides the first fully automatic analysis framework for executables. Our approach can also be applied to identify library functions or malicious behaviour in a given piece of assembly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信