{"title":"融合拼接技术和飞秒激光刻相移光纤光栅的特性","authors":"Yajun Jiang, Jian Xu, Yuan Yuan, Dexing Yang, Dong Li, Meirong Wang, Jianlin Zhao","doi":"10.5220/0005738503560360","DOIUrl":null,"url":null,"abstract":"Phase-shifted fiber Bragg grating (PS-FBG) inscription in nonphotosensitive single mode fiber (SMF) by the fusion splicing technique and femtosecond laser is reported. Two SMFs are fusion spliced to introduce a refractive index modulation point which acts as a phase shift, then exposing the fusion spliced fiber with femtosecond laser and a uniform phase mask. Two dips can be observed in the transmission spectrum of inscribed grating, and the max induced refractive index modulation can reach to 4.2×10−4 without any fiber sensitization for a peak power density of 4.5×1013 W/cm2. The annealing tests show that type I PS-FBG is successfully inscribed. This type of grating also shows good strain and pressure characteristics. Such PS-FBGs can be potentially used for optical fiber lasers, filters and sensors.","PeriodicalId":222009,"journal":{"name":"2016 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characteristics of phase-shifted fiber Bragg grating inscribed by fusion splicing technique and femtosecond laser\",\"authors\":\"Yajun Jiang, Jian Xu, Yuan Yuan, Dexing Yang, Dong Li, Meirong Wang, Jianlin Zhao\",\"doi\":\"10.5220/0005738503560360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase-shifted fiber Bragg grating (PS-FBG) inscription in nonphotosensitive single mode fiber (SMF) by the fusion splicing technique and femtosecond laser is reported. Two SMFs are fusion spliced to introduce a refractive index modulation point which acts as a phase shift, then exposing the fusion spliced fiber with femtosecond laser and a uniform phase mask. Two dips can be observed in the transmission spectrum of inscribed grating, and the max induced refractive index modulation can reach to 4.2×10−4 without any fiber sensitization for a peak power density of 4.5×1013 W/cm2. The annealing tests show that type I PS-FBG is successfully inscribed. This type of grating also shows good strain and pressure characteristics. Such PS-FBGs can be potentially used for optical fiber lasers, filters and sensors.\",\"PeriodicalId\":222009,\"journal\":{\"name\":\"2016 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005738503560360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005738503560360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characteristics of phase-shifted fiber Bragg grating inscribed by fusion splicing technique and femtosecond laser
Phase-shifted fiber Bragg grating (PS-FBG) inscription in nonphotosensitive single mode fiber (SMF) by the fusion splicing technique and femtosecond laser is reported. Two SMFs are fusion spliced to introduce a refractive index modulation point which acts as a phase shift, then exposing the fusion spliced fiber with femtosecond laser and a uniform phase mask. Two dips can be observed in the transmission spectrum of inscribed grating, and the max induced refractive index modulation can reach to 4.2×10−4 without any fiber sensitization for a peak power density of 4.5×1013 W/cm2. The annealing tests show that type I PS-FBG is successfully inscribed. This type of grating also shows good strain and pressure characteristics. Such PS-FBGs can be potentially used for optical fiber lasers, filters and sensors.