大规模网络物理系统通信的弹性端到端消息保护

Young-Jin Kim, V. Kolesnikov, M. Thottan
{"title":"大规模网络物理系统通信的弹性端到端消息保护","authors":"Young-Jin Kim, V. Kolesnikov, M. Thottan","doi":"10.1109/SmartGridComm.2012.6485982","DOIUrl":null,"url":null,"abstract":"Essential features of cyber-physical systems such as Smart Grid are real-time analysis of high-resolution data, which a massive number of embedded devices periodically generate, and the effective and timely response to specific analytic results obtained from the data. Therefore, mission-critical data and control messages exchanged among machines in the cyber-physical systems must be strongly protected to prevent the infrastructures from becoming vulnerable. Specifically, the protection mechanism used must be scalable, secured from an end-to-end perspective, and key exposure resilient. Moreover, there may be privacy protection required among devices that generate data, e.g., smart metering. In this paper, we show that, for large-scale cyber-physical system communications, most well-known point-to-point security schemes such as IPsec [1], TLS [2], or SRTP [3] cannot meet the scalability, extensibility, and thinness requirements. By contrast conventional group security schemes which address the limitations of the point-to-point schemes have other limitations on aspects of privacy, key exposure resiliency, and key refreshment. To address the security requirements for cyber-physical systems, we design a resilient end-to-end message protection framework, REMP, exploiting the notion of the long-term key that is given on per node basis. This long term key is assigned during the node authentication phase and is subsequently used to derive encryption keys from a random number per-message sent. Compared with conventional schemes, REMP improves privacy, message authentication, and key exposure, and without compromising scalability and end-to-end security. The tradeoff is a slight increase in computation time for message decryption and message authentication.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Resilient end-to-end message protection for large-scale cyber-physical system communications\",\"authors\":\"Young-Jin Kim, V. Kolesnikov, M. Thottan\",\"doi\":\"10.1109/SmartGridComm.2012.6485982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Essential features of cyber-physical systems such as Smart Grid are real-time analysis of high-resolution data, which a massive number of embedded devices periodically generate, and the effective and timely response to specific analytic results obtained from the data. Therefore, mission-critical data and control messages exchanged among machines in the cyber-physical systems must be strongly protected to prevent the infrastructures from becoming vulnerable. Specifically, the protection mechanism used must be scalable, secured from an end-to-end perspective, and key exposure resilient. Moreover, there may be privacy protection required among devices that generate data, e.g., smart metering. In this paper, we show that, for large-scale cyber-physical system communications, most well-known point-to-point security schemes such as IPsec [1], TLS [2], or SRTP [3] cannot meet the scalability, extensibility, and thinness requirements. By contrast conventional group security schemes which address the limitations of the point-to-point schemes have other limitations on aspects of privacy, key exposure resiliency, and key refreshment. To address the security requirements for cyber-physical systems, we design a resilient end-to-end message protection framework, REMP, exploiting the notion of the long-term key that is given on per node basis. This long term key is assigned during the node authentication phase and is subsequently used to derive encryption keys from a random number per-message sent. Compared with conventional schemes, REMP improves privacy, message authentication, and key exposure, and without compromising scalability and end-to-end security. The tradeoff is a slight increase in computation time for message decryption and message authentication.\",\"PeriodicalId\":143915,\"journal\":{\"name\":\"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2012.6485982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2012.6485982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

智能电网等网络物理系统的基本特征是对大量嵌入式设备周期性生成的高分辨率数据进行实时分析,并对从数据中获得的具体分析结果进行有效及时的响应。因此,在网络物理系统中的机器之间交换的关键任务数据和控制消息必须得到强有力的保护,以防止基础设施变得脆弱。具体来说,所使用的保护机制必须是可伸缩的,从端到端角度进行保护,并且密钥暴露具有弹性。此外,在产生数据的设备之间可能需要隐私保护,例如智能计量。在本文中,我们表明,对于大规模的网络物理系统通信,大多数著名的点对点安全方案,如IPsec [1], TLS[2]或SRTP[3]不能满足可扩展性,可扩展性和薄性要求。相比之下,解决点对点方案局限性的传统组安全方案在隐私、密钥暴露弹性和密钥刷新方面具有其他局限性。为了满足网络物理系统的安全需求,我们设计了一个有弹性的端到端消息保护框架REMP,它利用了基于每个节点的长期密钥的概念。这个长期密钥是在节点身份验证阶段分配的,随后用于从发送的每个消息的随机数派生加密密钥。与传统模式相比,REMP改进了隐私性、消息身份验证和密钥公开,而且不会损害可伸缩性和端到端安全性。这样做的代价是稍微增加了消息解密和消息身份验证的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resilient end-to-end message protection for large-scale cyber-physical system communications
Essential features of cyber-physical systems such as Smart Grid are real-time analysis of high-resolution data, which a massive number of embedded devices periodically generate, and the effective and timely response to specific analytic results obtained from the data. Therefore, mission-critical data and control messages exchanged among machines in the cyber-physical systems must be strongly protected to prevent the infrastructures from becoming vulnerable. Specifically, the protection mechanism used must be scalable, secured from an end-to-end perspective, and key exposure resilient. Moreover, there may be privacy protection required among devices that generate data, e.g., smart metering. In this paper, we show that, for large-scale cyber-physical system communications, most well-known point-to-point security schemes such as IPsec [1], TLS [2], or SRTP [3] cannot meet the scalability, extensibility, and thinness requirements. By contrast conventional group security schemes which address the limitations of the point-to-point schemes have other limitations on aspects of privacy, key exposure resiliency, and key refreshment. To address the security requirements for cyber-physical systems, we design a resilient end-to-end message protection framework, REMP, exploiting the notion of the long-term key that is given on per node basis. This long term key is assigned during the node authentication phase and is subsequently used to derive encryption keys from a random number per-message sent. Compared with conventional schemes, REMP improves privacy, message authentication, and key exposure, and without compromising scalability and end-to-end security. The tradeoff is a slight increase in computation time for message decryption and message authentication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信