基于模块化神经网络的酵母蛋白功能预测模型

Doosung Hwang, F. Fotouhi, R. Finley, W. Grosky
{"title":"基于模块化神经网络的酵母蛋白功能预测模型","authors":"Doosung Hwang, F. Fotouhi, R. Finley, W. Grosky","doi":"10.1109/BIBE.2003.1188984","DOIUrl":null,"url":null,"abstract":"In this paper we use a modular neural network to predict the molecular functions of yeast proteins. To solve this class problem, our proposed approach decomposes the original problem into a set of solvable 2-class subproblems using class information. Each 2-class problem has a set of positive and negative data. The yeast data is not equally distributed in function classes and hinders the learning of each neural network. We adopt a sampling strategy that generates a set of new class data to the subordinate class in order to balance the positive and negative data set. In data preparation, the biological concept of \"guilt-by-interaction\" is used for covering possible interaction partners among proteins of known functions. The proposed framework has been tested as a predictive model of yeast protein functions where the data source is stored in a relational database. In the experiments, the proposed system shows an average accuracy of 91.0% in the test set.","PeriodicalId":178814,"journal":{"name":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predictive model for yeast protein functions using modular neural approach\",\"authors\":\"Doosung Hwang, F. Fotouhi, R. Finley, W. Grosky\",\"doi\":\"10.1109/BIBE.2003.1188984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we use a modular neural network to predict the molecular functions of yeast proteins. To solve this class problem, our proposed approach decomposes the original problem into a set of solvable 2-class subproblems using class information. Each 2-class problem has a set of positive and negative data. The yeast data is not equally distributed in function classes and hinders the learning of each neural network. We adopt a sampling strategy that generates a set of new class data to the subordinate class in order to balance the positive and negative data set. In data preparation, the biological concept of \\\"guilt-by-interaction\\\" is used for covering possible interaction partners among proteins of known functions. The proposed framework has been tested as a predictive model of yeast protein functions where the data source is stored in a relational database. In the experiments, the proposed system shows an average accuracy of 91.0% in the test set.\",\"PeriodicalId\":178814,\"journal\":{\"name\":\"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2003.1188984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2003.1188984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用模块化神经网络对酵母蛋白的分子功能进行预测。为了解决这类问题,我们提出的方法利用类信息将原始问题分解为一组可解的2类子问题。每个2类问题都有一组正数据和负数据。酵母数据在函数类中分布不均,阻碍了每个神经网络的学习。为了平衡正负数据集,我们采用了一种采样策略,即向从属类生成一组新的类数据。在数据准备中,“相互作用的负罪感”的生物学概念用于覆盖已知功能的蛋白质之间可能的相互作用伙伴。所提出的框架已被测试为酵母蛋白功能的预测模型,其中数据源存储在关系数据库中。在实验中,该系统在测试集中的平均准确率为91.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive model for yeast protein functions using modular neural approach
In this paper we use a modular neural network to predict the molecular functions of yeast proteins. To solve this class problem, our proposed approach decomposes the original problem into a set of solvable 2-class subproblems using class information. Each 2-class problem has a set of positive and negative data. The yeast data is not equally distributed in function classes and hinders the learning of each neural network. We adopt a sampling strategy that generates a set of new class data to the subordinate class in order to balance the positive and negative data set. In data preparation, the biological concept of "guilt-by-interaction" is used for covering possible interaction partners among proteins of known functions. The proposed framework has been tested as a predictive model of yeast protein functions where the data source is stored in a relational database. In the experiments, the proposed system shows an average accuracy of 91.0% in the test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信