在12正则坚果图上

N. Bašić, M. Knor, R. Škrekovski
{"title":"在12正则坚果图上","authors":"N. Bašić, M. Knor, R. Škrekovski","doi":"10.26493/2590-9770.1403.1B1","DOIUrl":null,"url":null,"abstract":"A nut graph is a simple graph whose adjacency matrix is singular with 1-dimensional kernel such that the corresponding eigenvector has no zero entries. In 2020, Fowler et al. characterised for each d ∈ {3, 4, …, 11} all values n such that there exists a d-regular nut graph of order n. In the present paper, we resolve the first open case d = 12, i.e. we show that there exists a 12-regular nut graph of order n if and only if n ≥ 16. We also present a result by which there are infinitely many circulant nut graphs of degree d ≡ 0 (mod  4) and no circulant nut graphs of degree d ≡ 2 (mod  4). The former result partially resolves a question by Fowler et al. on existence of vertex-transitive nut graphs of order n and degree d. We conclude the paper with problems, conjectures and ideas for further work.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On 12-regular nut graphs\",\"authors\":\"N. Bašić, M. Knor, R. Škrekovski\",\"doi\":\"10.26493/2590-9770.1403.1B1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nut graph is a simple graph whose adjacency matrix is singular with 1-dimensional kernel such that the corresponding eigenvector has no zero entries. In 2020, Fowler et al. characterised for each d ∈ {3, 4, …, 11} all values n such that there exists a d-regular nut graph of order n. In the present paper, we resolve the first open case d = 12, i.e. we show that there exists a 12-regular nut graph of order n if and only if n ≥ 16. We also present a result by which there are infinitely many circulant nut graphs of degree d ≡ 0 (mod  4) and no circulant nut graphs of degree d ≡ 2 (mod  4). The former result partially resolves a question by Fowler et al. on existence of vertex-transitive nut graphs of order n and degree d. We conclude the paper with problems, conjectures and ideas for further work.\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1403.1B1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1403.1B1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

坚果图是一种简单图,它的邻接矩阵是奇异的,具有一维核,使得相应的特征向量没有零项。在2020年,Fowler等人对每个d∈{3,4,…,11}的所有值n进行了刻画,使得存在一个n阶的d正则坚果图。在本文中,我们解决了第一个开放情况d = 12,即证明当且仅当n≥16存在一个n阶的12正则坚果图。我们也给出了一个结果,其中有无穷多个d次循环螺母图≡0 (mod 4)和没有d次循环螺母图≡2 (mod 4)。前一个结果部分解决了Fowler等人关于n次和d次顶点传递螺母图存在性的问题。我们用问题、猜想和进一步工作的想法来结束本文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On 12-regular nut graphs
A nut graph is a simple graph whose adjacency matrix is singular with 1-dimensional kernel such that the corresponding eigenvector has no zero entries. In 2020, Fowler et al. characterised for each d ∈ {3, 4, …, 11} all values n such that there exists a d-regular nut graph of order n. In the present paper, we resolve the first open case d = 12, i.e. we show that there exists a 12-regular nut graph of order n if and only if n ≥ 16. We also present a result by which there are infinitely many circulant nut graphs of degree d ≡ 0 (mod  4) and no circulant nut graphs of degree d ≡ 2 (mod  4). The former result partially resolves a question by Fowler et al. on existence of vertex-transitive nut graphs of order n and degree d. We conclude the paper with problems, conjectures and ideas for further work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信