使用隐藏条件随机场的有丝分裂序列检测

An Liu, Kang Li, T. Kanade
{"title":"使用隐藏条件随机场的有丝分裂序列检测","authors":"An Liu, Kang Li, T. Kanade","doi":"10.1109/ISBI.2010.5490279","DOIUrl":null,"url":null,"abstract":"We propose a fully-automated mitosis event detector using hidden conditional random fields for cell populations imaged with time-lapse phase contrast microscopy. The method consists of two stages that jointly optimize recall and precision. First, we apply model-based microscopy image preconditioning and volumetric segmentation to identify candidate spatiotemporal sub-regions in the input image sequence where mitosis potentially occurred. Then, we apply a learned hidden conditional random field classifier to classify each candidate sequence as mitosis or not. The proposed detection method achieved 95% precision and 85% recall in very challenging image sequences of multipolar-shaped C3H10T1/2 mesenchymal stem cells. The superiority of the method was further demonstrated by comparisons with conditional random field and support vector machine classifiers. Moreover, the proposed method does not depend on empirical parameters, ad hoc image processing, or cell tracking; and can be straightforwardly adapted to different cell types.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Mitosis sequence detection using hidden conditional random fields\",\"authors\":\"An Liu, Kang Li, T. Kanade\",\"doi\":\"10.1109/ISBI.2010.5490279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a fully-automated mitosis event detector using hidden conditional random fields for cell populations imaged with time-lapse phase contrast microscopy. The method consists of two stages that jointly optimize recall and precision. First, we apply model-based microscopy image preconditioning and volumetric segmentation to identify candidate spatiotemporal sub-regions in the input image sequence where mitosis potentially occurred. Then, we apply a learned hidden conditional random field classifier to classify each candidate sequence as mitosis or not. The proposed detection method achieved 95% precision and 85% recall in very challenging image sequences of multipolar-shaped C3H10T1/2 mesenchymal stem cells. The superiority of the method was further demonstrated by comparisons with conditional random field and support vector machine classifiers. Moreover, the proposed method does not depend on empirical parameters, ad hoc image processing, or cell tracking; and can be straightforwardly adapted to different cell types.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

我们提出了一个全自动的有丝分裂事件检测器,使用隐藏的条件随机场对细胞群成像的延时相对比显微镜。该方法包括两个阶段,共同优化查全率和查准率。首先,我们应用基于模型的显微镜图像预处理和体积分割来识别输入图像序列中可能发生有丝分裂的候选时空子区域。然后,我们使用一个学习的隐藏条件随机场分类器对每个候选序列进行有丝分裂或不分裂的分类。该方法在极具挑战性的多极形C3H10T1/2间充质干细胞图像序列中,检测精度达到95%,召回率达到85%。通过与条件随机场和支持向量机分类器的比较,进一步证明了该方法的优越性。此外,所提出的方法不依赖于经验参数、特别图像处理或细胞跟踪;并且可以直接适应不同的细胞类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitosis sequence detection using hidden conditional random fields
We propose a fully-automated mitosis event detector using hidden conditional random fields for cell populations imaged with time-lapse phase contrast microscopy. The method consists of two stages that jointly optimize recall and precision. First, we apply model-based microscopy image preconditioning and volumetric segmentation to identify candidate spatiotemporal sub-regions in the input image sequence where mitosis potentially occurred. Then, we apply a learned hidden conditional random field classifier to classify each candidate sequence as mitosis or not. The proposed detection method achieved 95% precision and 85% recall in very challenging image sequences of multipolar-shaped C3H10T1/2 mesenchymal stem cells. The superiority of the method was further demonstrated by comparisons with conditional random field and support vector machine classifiers. Moreover, the proposed method does not depend on empirical parameters, ad hoc image processing, or cell tracking; and can be straightforwardly adapted to different cell types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信