基于多层支持向量机的电力系统暂态稳定评估

Qilin Wang, C. Pang, Hashim Alnami
{"title":"基于多层支持向量机的电力系统暂态稳定评估","authors":"Qilin Wang, C. Pang, Hashim Alnami","doi":"10.1109/TPEC51183.2021.9384918","DOIUrl":null,"url":null,"abstract":"With the rapid growth of power systems, more large interconnections and the integration of large renewable energies make the systems more complicated. Therefore, transient stability assessment (TSA) has always been considered as one of the top challenges to ensure the security and operation of power systems. The development of Artificial Intelligence (AI) technologies, such as Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been drawn attentions to the power industry recently. Compared with traditional SVM, this paper presents an advanced TSA system using Multi-layer Support Vector Machine (ML-SVM) method. Basically, a Genetic Algorithm (GA) is used in ML-SVM to identify the valued feature subsets with varying numbers of features which makes full use of the input information. Transient stabilities of the system are determined based on the generator relative rotor angles obtained from the time-domain simulation. Data from the time-domain simulation are used as the inputs for ML-SVM training and testing. Then these trained SVMs are integrated to assess the transient stability of the power system. The simulation results show that the proposed method can reduce the possibility of misclassification of the system. Case study of IEEE 9-bus system on PowerWorld Simulator illustrates the effectiveness of the proposed approach.","PeriodicalId":354018,"journal":{"name":"2021 IEEE Texas Power and Energy Conference (TPEC)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Transient Stability Assessment of a Power System Using Multi-layer SVM Method\",\"authors\":\"Qilin Wang, C. Pang, Hashim Alnami\",\"doi\":\"10.1109/TPEC51183.2021.9384918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of power systems, more large interconnections and the integration of large renewable energies make the systems more complicated. Therefore, transient stability assessment (TSA) has always been considered as one of the top challenges to ensure the security and operation of power systems. The development of Artificial Intelligence (AI) technologies, such as Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been drawn attentions to the power industry recently. Compared with traditional SVM, this paper presents an advanced TSA system using Multi-layer Support Vector Machine (ML-SVM) method. Basically, a Genetic Algorithm (GA) is used in ML-SVM to identify the valued feature subsets with varying numbers of features which makes full use of the input information. Transient stabilities of the system are determined based on the generator relative rotor angles obtained from the time-domain simulation. Data from the time-domain simulation are used as the inputs for ML-SVM training and testing. Then these trained SVMs are integrated to assess the transient stability of the power system. The simulation results show that the proposed method can reduce the possibility of misclassification of the system. Case study of IEEE 9-bus system on PowerWorld Simulator illustrates the effectiveness of the proposed approach.\",\"PeriodicalId\":354018,\"journal\":{\"name\":\"2021 IEEE Texas Power and Energy Conference (TPEC)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Texas Power and Energy Conference (TPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPEC51183.2021.9384918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC51183.2021.9384918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着电力系统的快速发展,更大规模的互联和大型可再生能源的并网使得系统更加复杂。因此,暂态稳定评估(TSA)一直被认为是确保电力系统安全运行的首要挑战之一。近年来,人工神经网络(ANN)、支持向量机(SVM)等人工智能(AI)技术的发展备受电力行业的关注。与传统支持向量机(SVM)相比,本文提出了一种基于多层支持向量机(ML-SVM)的先进TSA系统。在ML-SVM中,基本采用遗传算法(GA)来识别具有不同数量特征的有值特征子集,充分利用了输入信息。根据时域仿真得到的发电机转子相对角度确定系统的暂态稳定性。时域仿真数据作为ML-SVM训练和测试的输入。然后将这些训练好的支持向量机集成到电力系统暂态稳定评估中。仿真结果表明,该方法可以降低系统误分类的可能性。在PowerWorld模拟器上对IEEE 9总线系统进行了实例分析,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient Stability Assessment of a Power System Using Multi-layer SVM Method
With the rapid growth of power systems, more large interconnections and the integration of large renewable energies make the systems more complicated. Therefore, transient stability assessment (TSA) has always been considered as one of the top challenges to ensure the security and operation of power systems. The development of Artificial Intelligence (AI) technologies, such as Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been drawn attentions to the power industry recently. Compared with traditional SVM, this paper presents an advanced TSA system using Multi-layer Support Vector Machine (ML-SVM) method. Basically, a Genetic Algorithm (GA) is used in ML-SVM to identify the valued feature subsets with varying numbers of features which makes full use of the input information. Transient stabilities of the system are determined based on the generator relative rotor angles obtained from the time-domain simulation. Data from the time-domain simulation are used as the inputs for ML-SVM training and testing. Then these trained SVMs are integrated to assess the transient stability of the power system. The simulation results show that the proposed method can reduce the possibility of misclassification of the system. Case study of IEEE 9-bus system on PowerWorld Simulator illustrates the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信