除法环的乘法群

R. Hazrat, M. Mahdavi-Hezavehi, M. Motiee
{"title":"除法环的乘法群","authors":"R. Hazrat, M. Mahdavi-Hezavehi, M. Motiee","doi":"10.3318/PRIA.2014.114.04","DOIUrl":null,"url":null,"abstract":"Exactly 170 years ago, the construction of the real quaternion algebra by William Hamilton was announced in the Proceedings of the Royal Irish Academy. It became the first example of non-commutative division rings and a major turning point of algebra. To this day, the multiplicative group structure of quaternion algebras have not completely been understood. This article is a long survey of the recent developments on the multiplicative group structure of division rings.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Multiplicative groups of division rings\",\"authors\":\"R. Hazrat, M. Mahdavi-Hezavehi, M. Motiee\",\"doi\":\"10.3318/PRIA.2014.114.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exactly 170 years ago, the construction of the real quaternion algebra by William Hamilton was announced in the Proceedings of the Royal Irish Academy. It became the first example of non-commutative division rings and a major turning point of algebra. To this day, the multiplicative group structure of quaternion algebras have not completely been understood. This article is a long survey of the recent developments on the multiplicative group structure of division rings.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/PRIA.2014.114.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/PRIA.2014.114.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

就在170年前,威廉·汉密尔顿在《皇家爱尔兰学院学报》上宣布了真正的四元数代数的构造。它成为非交换除法环的第一个例子,也是代数的一个重要转折点。直到今天,四元数代数的乘法群结构还没有完全被理解。本文对除法环的乘群结构的最新进展作了较长的综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicative groups of division rings
Exactly 170 years ago, the construction of the real quaternion algebra by William Hamilton was announced in the Proceedings of the Royal Irish Academy. It became the first example of non-commutative division rings and a major turning point of algebra. To this day, the multiplicative group structure of quaternion algebras have not completely been understood. This article is a long survey of the recent developments on the multiplicative group structure of division rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信