Spars核特征预测岩石碳捕获使用3D x射线图像

S. Sharifzadeh
{"title":"Spars核特征预测岩石碳捕获使用3D x射线图像","authors":"S. Sharifzadeh","doi":"10.1109/ICMLA55696.2022.00081","DOIUrl":null,"url":null,"abstract":"X-ray Computed Tomography (CT) imaging is used as a non-destructive strategy for characterizing the internal structure of rocks. One important application of such studies is prediction of the relative permeability of CO2 in reservoirs. Estimation of Carbon Capture and Storage (CCS) has a great impact in mitigation strategies for global warming and controlling the effects of climate change. In this paper, 3D Xray Computed Tomography (CT) image volumes of rocks are characterized for prediction of the CO2 relative permeability. A new analysis pipeline is introduced that extracts high dimensional entropy features from the local 3D voxels. That is followed by a sparse kernelized dimensionality reduction step to alleviate the over-fitting issue. Then, regression analysis is performed using Gaussian Process Regression (GPR). Furthermore, the proposed pipeline is compared with two other deep Neural Networks (NN) models including a Convolutional Neural Network (CNN) regression model as well as a transferred pre-trained ResNet50 model using the rock X-ray training data. Experimental results show improvements in CO2 permeability prediction using the proposed analysis pipeline.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spars Kernelized Features for Prediction of Rock’s Carbon Capture using 3D X-Ray Images\",\"authors\":\"S. Sharifzadeh\",\"doi\":\"10.1109/ICMLA55696.2022.00081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"X-ray Computed Tomography (CT) imaging is used as a non-destructive strategy for characterizing the internal structure of rocks. One important application of such studies is prediction of the relative permeability of CO2 in reservoirs. Estimation of Carbon Capture and Storage (CCS) has a great impact in mitigation strategies for global warming and controlling the effects of climate change. In this paper, 3D Xray Computed Tomography (CT) image volumes of rocks are characterized for prediction of the CO2 relative permeability. A new analysis pipeline is introduced that extracts high dimensional entropy features from the local 3D voxels. That is followed by a sparse kernelized dimensionality reduction step to alleviate the over-fitting issue. Then, regression analysis is performed using Gaussian Process Regression (GPR). Furthermore, the proposed pipeline is compared with two other deep Neural Networks (NN) models including a Convolutional Neural Network (CNN) regression model as well as a transferred pre-trained ResNet50 model using the rock X-ray training data. Experimental results show improvements in CO2 permeability prediction using the proposed analysis pipeline.\",\"PeriodicalId\":128160,\"journal\":{\"name\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA55696.2022.00081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

x射线计算机断层扫描(CT)成像被用作表征岩石内部结构的非破坏性策略。这类研究的一个重要应用是预测储层中二氧化碳的相对渗透率。碳捕集与封存(CCS)的估算对全球变暖减缓战略和控制气候变化影响具有重要影响。本文对岩石三维x射线计算机断层扫描(CT)成像体积进行了表征,用于预测CO2相对渗透率。提出了一种新的分析管道,从局部三维体素中提取高维熵特征。接下来是一个稀疏核降维步骤,以缓解过度拟合问题。然后,使用高斯过程回归(GPR)进行回归分析。此外,将所提出的管道与另外两种深度神经网络(NN)模型进行了比较,其中包括卷积神经网络(CNN)回归模型以及使用岩石x射线训练数据传输的预训练ResNet50模型。实验结果表明,利用该分析管道对CO2渗透率的预测有一定的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spars Kernelized Features for Prediction of Rock’s Carbon Capture using 3D X-Ray Images
X-ray Computed Tomography (CT) imaging is used as a non-destructive strategy for characterizing the internal structure of rocks. One important application of such studies is prediction of the relative permeability of CO2 in reservoirs. Estimation of Carbon Capture and Storage (CCS) has a great impact in mitigation strategies for global warming and controlling the effects of climate change. In this paper, 3D Xray Computed Tomography (CT) image volumes of rocks are characterized for prediction of the CO2 relative permeability. A new analysis pipeline is introduced that extracts high dimensional entropy features from the local 3D voxels. That is followed by a sparse kernelized dimensionality reduction step to alleviate the over-fitting issue. Then, regression analysis is performed using Gaussian Process Regression (GPR). Furthermore, the proposed pipeline is compared with two other deep Neural Networks (NN) models including a Convolutional Neural Network (CNN) regression model as well as a transferred pre-trained ResNet50 model using the rock X-ray training data. Experimental results show improvements in CO2 permeability prediction using the proposed analysis pipeline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信