基于广义有理基函数的Wiener模型自适应频域辨识

Hangmei Rao, Wen Mi
{"title":"基于广义有理基函数的Wiener模型自适应频域辨识","authors":"Hangmei Rao, Wen Mi","doi":"10.1109/YAC.2018.8406388","DOIUrl":null,"url":null,"abstract":"This paper addresses a novel adaptive algorithm method for direct identification Wiener systems by using the rational orthogonal systems. By adopting an adaptive decomposition algorithm for the Hardy space functions, identification of the linear part can be achieved with the sampling input and output data. After that the nonlinear part can be estimated with general least-squares method. Example shows the proposed algorithm is efficient.","PeriodicalId":226586,"journal":{"name":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive frequency-domain identification of Wiener models by using generalized rational basis functions\",\"authors\":\"Hangmei Rao, Wen Mi\",\"doi\":\"10.1109/YAC.2018.8406388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses a novel adaptive algorithm method for direct identification Wiener systems by using the rational orthogonal systems. By adopting an adaptive decomposition algorithm for the Hardy space functions, identification of the linear part can be achieved with the sampling input and output data. After that the nonlinear part can be estimated with general least-squares method. Example shows the proposed algorithm is efficient.\",\"PeriodicalId\":226586,\"journal\":{\"name\":\"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YAC.2018.8406388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC.2018.8406388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用有理正交系统直接识别维纳系统的自适应算法。采用Hardy空间函数的自适应分解算法,利用采样输入输出数据实现线性部分的识别。然后用一般最小二乘法对非线性部分进行估计。实例验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive frequency-domain identification of Wiener models by using generalized rational basis functions
This paper addresses a novel adaptive algorithm method for direct identification Wiener systems by using the rational orthogonal systems. By adopting an adaptive decomposition algorithm for the Hardy space functions, identification of the linear part can be achieved with the sampling input and output data. After that the nonlinear part can be estimated with general least-squares method. Example shows the proposed algorithm is efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信