一种用于系统覆盖率评估的故障列表生成算法

D.T. Smith, B.W. Johnson, J. Profeta, D. Bozzolo
{"title":"一种用于系统覆盖率评估的故障列表生成算法","authors":"D.T. Smith, B.W. Johnson, J. Profeta, D. Bozzolo","doi":"10.1109/RAMS.1995.513279","DOIUrl":null,"url":null,"abstract":"The expanding size and complexity of dependable computing systems has increased their cost and at the same time complicated the process of estimating dependability attributes such as fault coverage and detection latency. One approach to estimating such parameters is to employ fault injection, however algorithms are needed to generate a list of faults to inject. Unlike randomly selected faults, a fault list is needed which guarantees to cause either system failure or the activation of mechanisms which cover the injected fault. This research effort has developed an automated technique for selecting faults to use during fault injection experiments. The technique is general in nature and can be applied to any computing platform. The primary objective of this research effort was the development and implementation of the algorithms to generate a fault set which exercises the fault detection and fault processing aspects of the system. The end result is a completely automated method for evaluating complex dependable computing systems by estimating fault coverage and fault detection latency.","PeriodicalId":143102,"journal":{"name":"Annual Reliability and Maintainability Symposium 1995 Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A fault-list generation algorithm for the evaluation of system coverage\",\"authors\":\"D.T. Smith, B.W. Johnson, J. Profeta, D. Bozzolo\",\"doi\":\"10.1109/RAMS.1995.513279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The expanding size and complexity of dependable computing systems has increased their cost and at the same time complicated the process of estimating dependability attributes such as fault coverage and detection latency. One approach to estimating such parameters is to employ fault injection, however algorithms are needed to generate a list of faults to inject. Unlike randomly selected faults, a fault list is needed which guarantees to cause either system failure or the activation of mechanisms which cover the injected fault. This research effort has developed an automated technique for selecting faults to use during fault injection experiments. The technique is general in nature and can be applied to any computing platform. The primary objective of this research effort was the development and implementation of the algorithms to generate a fault set which exercises the fault detection and fault processing aspects of the system. The end result is a completely automated method for evaluating complex dependable computing systems by estimating fault coverage and fault detection latency.\",\"PeriodicalId\":143102,\"journal\":{\"name\":\"Annual Reliability and Maintainability Symposium 1995 Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reliability and Maintainability Symposium 1995 Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS.1995.513279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reliability and Maintainability Symposium 1995 Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.1995.513279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

可靠计算系统的规模和复杂度不断扩大,不仅增加了其成本,同时也使故障覆盖和检测延迟等可靠性属性的估计过程变得复杂。估计这些参数的一种方法是使用故障注入,但是需要算法来生成要注入的故障列表。与随机选择的故障不同,需要一个故障列表来保证导致系统故障或激活覆盖注入故障的机制。本研究开发了一种在断层注入实验中选择断层的自动化技术。该技术本质上是通用的,可以应用于任何计算平台。本研究工作的主要目标是开发和实现生成故障集的算法,该算法用于系统的故障检测和故障处理方面。最终的结果是一种完全自动化的方法,通过估计故障覆盖和故障检测延迟来评估复杂的可靠计算系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fault-list generation algorithm for the evaluation of system coverage
The expanding size and complexity of dependable computing systems has increased their cost and at the same time complicated the process of estimating dependability attributes such as fault coverage and detection latency. One approach to estimating such parameters is to employ fault injection, however algorithms are needed to generate a list of faults to inject. Unlike randomly selected faults, a fault list is needed which guarantees to cause either system failure or the activation of mechanisms which cover the injected fault. This research effort has developed an automated technique for selecting faults to use during fault injection experiments. The technique is general in nature and can be applied to any computing platform. The primary objective of this research effort was the development and implementation of the algorithms to generate a fault set which exercises the fault detection and fault processing aspects of the system. The end result is a completely automated method for evaluating complex dependable computing systems by estimating fault coverage and fault detection latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信