基于树莓派平台的视觉传感器网络高效视频编码解决方案

Thao Nguyen Thi Huong, Huy Phi Cong, Xiem HoangVan, Tien Huu Vu
{"title":"基于树莓派平台的视觉传感器网络高效视频编码解决方案","authors":"Thao Nguyen Thi Huong, Huy Phi Cong, Xiem HoangVan, Tien Huu Vu","doi":"10.1109/MCSoC2018.2018.00022","DOIUrl":null,"url":null,"abstract":"Visual sensor network (VSN) has recently emerged as a promising solution for tremendous range of new vision-sensor based applications, from video surveillance, environmental monitoring to remote sensing. However, the practical VSN currently faces to the visual processing and transmitting problems due to the limitation of power at sensor nodes and the restriction of transmission bandwidth. In this context, the selection of a suitable video compression algorithm is utmost important task for achieving a practical VSN. To address this problem, this paper introduces a practical Raspberry Pi based High Efficiency Video Coding (HEVC) solution for visual sensor networks. The selected video coding solution is one of the most up-to-date compression engines but still achieving the low complexity capability. Experimental results show that the proposed video coding architecture has good compression performance with acceptable complexity performance.","PeriodicalId":413836,"journal":{"name":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Practical High Efficiency Video Coding Solution for Visual Sensor Network using Raspberry Pi Platform\",\"authors\":\"Thao Nguyen Thi Huong, Huy Phi Cong, Xiem HoangVan, Tien Huu Vu\",\"doi\":\"10.1109/MCSoC2018.2018.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual sensor network (VSN) has recently emerged as a promising solution for tremendous range of new vision-sensor based applications, from video surveillance, environmental monitoring to remote sensing. However, the practical VSN currently faces to the visual processing and transmitting problems due to the limitation of power at sensor nodes and the restriction of transmission bandwidth. In this context, the selection of a suitable video compression algorithm is utmost important task for achieving a practical VSN. To address this problem, this paper introduces a practical Raspberry Pi based High Efficiency Video Coding (HEVC) solution for visual sensor networks. The selected video coding solution is one of the most up-to-date compression engines but still achieving the low complexity capability. Experimental results show that the proposed video coding architecture has good compression performance with acceptable complexity performance.\",\"PeriodicalId\":413836,\"journal\":{\"name\":\"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC2018.2018.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC2018.2018.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视觉传感器网络(VSN)最近成为一种有前途的解决方案,用于从视频监控,环境监测到遥感的大量新的基于视觉传感器的应用。然而,由于传感器节点功率的限制和传输带宽的限制,实际的VSN目前面临着视觉处理和传输的问题。在这种情况下,选择合适的视频压缩算法对于实现实用的VSN至关重要。为了解决这个问题,本文介绍了一种实用的基于树莓派的高效视频编码(HEVC)视觉传感器网络解决方案。所选择的视频编码解决方案是最新的压缩引擎之一,但仍然实现了低复杂度的能力。实验结果表明,所提出的视频编码结构具有良好的压缩性能和可接受的复杂度性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Practical High Efficiency Video Coding Solution for Visual Sensor Network using Raspberry Pi Platform
Visual sensor network (VSN) has recently emerged as a promising solution for tremendous range of new vision-sensor based applications, from video surveillance, environmental monitoring to remote sensing. However, the practical VSN currently faces to the visual processing and transmitting problems due to the limitation of power at sensor nodes and the restriction of transmission bandwidth. In this context, the selection of a suitable video compression algorithm is utmost important task for achieving a practical VSN. To address this problem, this paper introduces a practical Raspberry Pi based High Efficiency Video Coding (HEVC) solution for visual sensor networks. The selected video coding solution is one of the most up-to-date compression engines but still achieving the low complexity capability. Experimental results show that the proposed video coding architecture has good compression performance with acceptable complexity performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信