基于语义的机器学习数据分析方法

A. Pinto, F. Scioscia, G. Loseto, M. Ruta, E. Bove, E. Sciascio
{"title":"基于语义的机器学习数据分析方法","authors":"A. Pinto, F. Scioscia, G. Loseto, M. Ruta, E. Bove, E. Sciascio","doi":"10.1109/ICOSC.2015.7050828","DOIUrl":null,"url":null,"abstract":"Pervasive applications and services are increasingly based on the intelligent interpretation of data gathered via heterogeneous sensors dipped in the environment. Classical Machine Learning (ML) techniques often do not go beyond a basic classification, lacking a meaningful representation of the detected events. This paper introduces a early proposal for a semantic-enhanced machine learning analysis on data of sensors streams, performing better even on resource-constrained pervasive smart objects. The framework merges an ontology-driven characterization of statistical data distributions with non-standard matchmaking services, enabling a fine-grained event detection by treating the typical classification problem of ML as a resource discovery.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A semantic-based approach for Machine Learning data analysis\",\"authors\":\"A. Pinto, F. Scioscia, G. Loseto, M. Ruta, E. Bove, E. Sciascio\",\"doi\":\"10.1109/ICOSC.2015.7050828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pervasive applications and services are increasingly based on the intelligent interpretation of data gathered via heterogeneous sensors dipped in the environment. Classical Machine Learning (ML) techniques often do not go beyond a basic classification, lacking a meaningful representation of the detected events. This paper introduces a early proposal for a semantic-enhanced machine learning analysis on data of sensors streams, performing better even on resource-constrained pervasive smart objects. The framework merges an ontology-driven characterization of statistical data distributions with non-standard matchmaking services, enabling a fine-grained event detection by treating the typical classification problem of ML as a resource discovery.\",\"PeriodicalId\":126701,\"journal\":{\"name\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2015.7050828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

普及的应用程序和服务越来越多地基于对通过浸入环境中的异构传感器收集的数据的智能解释。经典的机器学习(ML)技术通常不能超越基本的分类,缺乏对检测到的事件的有意义的表示。本文介绍了对传感器流数据进行语义增强的机器学习分析的早期建议,即使在资源受限的普适智能对象上也表现得更好。该框架将统计数据分布的本体驱动特征与非标准配对服务相结合,通过将ML的典型分类问题视为资源发现,实现细粒度事件检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semantic-based approach for Machine Learning data analysis
Pervasive applications and services are increasingly based on the intelligent interpretation of data gathered via heterogeneous sensors dipped in the environment. Classical Machine Learning (ML) techniques often do not go beyond a basic classification, lacking a meaningful representation of the detected events. This paper introduces a early proposal for a semantic-enhanced machine learning analysis on data of sensors streams, performing better even on resource-constrained pervasive smart objects. The framework merges an ontology-driven characterization of statistical data distributions with non-standard matchmaking services, enabling a fine-grained event detection by treating the typical classification problem of ML as a resource discovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信