动作建模:预测查询行为的语言模型

G. C. Murray, Jimmy J. Lin, Abdur Chowdhury
{"title":"动作建模:预测查询行为的语言模型","authors":"G. C. Murray, Jimmy J. Lin, Abdur Chowdhury","doi":"10.1145/1148170.1148315","DOIUrl":null,"url":null,"abstract":"We present a novel language modeling approach to capturing the query reformulation behavior of Web search users. Based on a framework that categorizes eight different types of \"user moves\" (adding/removing query terms, etc.), we treat search sessions as sequence data and build n-gram language models to capture user behavior. We evaluated our models in a prediction task. The results suggest that useful patterns of activity can be extracted from user histories. Furthermore, by examining prediction performance under different order n-gram models, we gained insight into the amount of history/context that is associated with different types of user actions. Our work serves as the basis for more refined user models.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Action modeling: language models that predict query behavior\",\"authors\":\"G. C. Murray, Jimmy J. Lin, Abdur Chowdhury\",\"doi\":\"10.1145/1148170.1148315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel language modeling approach to capturing the query reformulation behavior of Web search users. Based on a framework that categorizes eight different types of \\\"user moves\\\" (adding/removing query terms, etc.), we treat search sessions as sequence data and build n-gram language models to capture user behavior. We evaluated our models in a prediction task. The results suggest that useful patterns of activity can be extracted from user histories. Furthermore, by examining prediction performance under different order n-gram models, we gained insight into the amount of history/context that is associated with different types of user actions. Our work serves as the basis for more refined user models.\",\"PeriodicalId\":433366,\"journal\":{\"name\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1148170.1148315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的语言建模方法来捕获Web搜索用户的查询重构行为。基于对八种不同类型的“用户移动”(添加/删除查询项等)进行分类的框架,我们将搜索会话视为序列数据,并构建n-gram语言模型来捕获用户行为。我们在一个预测任务中评估了我们的模型。结果表明,可以从用户历史中提取有用的活动模式。此外,通过检查不同阶n-gram模型下的预测性能,我们深入了解了与不同类型的用户操作相关的历史/上下文的数量。我们的工作可以作为更精细的用户模型的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Action modeling: language models that predict query behavior
We present a novel language modeling approach to capturing the query reformulation behavior of Web search users. Based on a framework that categorizes eight different types of "user moves" (adding/removing query terms, etc.), we treat search sessions as sequence data and build n-gram language models to capture user behavior. We evaluated our models in a prediction task. The results suggest that useful patterns of activity can be extracted from user histories. Furthermore, by examining prediction performance under different order n-gram models, we gained insight into the amount of history/context that is associated with different types of user actions. Our work serves as the basis for more refined user models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信