单调性检验与有向等周不等式

{"title":"单调性检验与有向等周不等式","authors":"","doi":"10.1145/3568031.3568034","DOIUrl":null,"url":null,"abstract":"2.1.1 Boolean Isoperimetric Type Theorems n Given a function f : {0, 1} ↦ {0, 1}, define the variance of the function as var(f ) = p(1 − p), where p = Prx[f (x) = 1]. Let Sf denote the set of sensitive edges, that is, the set of pairs (x, y) such that x, y ∈ {0, 1}n differ in exactly one coordinate, f (x) = 1 and f (y) = 0. Let If = |Sf | denote the “total influence” of the function. A 2n folklore theorem states:1","PeriodicalId":377190,"journal":{"name":"Circuits, Packets, and Protocols","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity Testing and Directed Isoperimetric Inequalities\",\"authors\":\"\",\"doi\":\"10.1145/3568031.3568034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2.1.1 Boolean Isoperimetric Type Theorems n Given a function f : {0, 1} ↦ {0, 1}, define the variance of the function as var(f ) = p(1 − p), where p = Prx[f (x) = 1]. Let Sf denote the set of sensitive edges, that is, the set of pairs (x, y) such that x, y ∈ {0, 1}n differ in exactly one coordinate, f (x) = 1 and f (y) = 0. Let If = |Sf | denote the “total influence” of the function. A 2n folklore theorem states:1\",\"PeriodicalId\":377190,\"journal\":{\"name\":\"Circuits, Packets, and Protocols\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuits, Packets, and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3568031.3568034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Packets, and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568031.3568034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个函数f:{0,1}∑{0,1},定义函数的方差为var(f) = p(1−p),其中p = Prx[f (x) = 1]。设Sf表示敏感边的集合,即(x, y)对的集合,使得x, y∈{0,1}n恰好在一个坐标上不同,即f (x) = 1和f (y) = 0。设If = |Sf |表示该函数的“总影响”。一个2n民俗定理指出:1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monotonicity Testing and Directed Isoperimetric Inequalities
2.1.1 Boolean Isoperimetric Type Theorems n Given a function f : {0, 1} ↦ {0, 1}, define the variance of the function as var(f ) = p(1 − p), where p = Prx[f (x) = 1]. Let Sf denote the set of sensitive edges, that is, the set of pairs (x, y) such that x, y ∈ {0, 1}n differ in exactly one coordinate, f (x) = 1 and f (y) = 0. Let If = |Sf | denote the “total influence” of the function. A 2n folklore theorem states:1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信