{"title":"单调性检验与有向等周不等式","authors":"","doi":"10.1145/3568031.3568034","DOIUrl":null,"url":null,"abstract":"2.1.1 Boolean Isoperimetric Type Theorems n Given a function f : {0, 1} ↦ {0, 1}, define the variance of the function as var(f ) = p(1 − p), where p = Prx[f (x) = 1]. Let Sf denote the set of sensitive edges, that is, the set of pairs (x, y) such that x, y ∈ {0, 1}n differ in exactly one coordinate, f (x) = 1 and f (y) = 0. Let If = |Sf | denote the “total influence” of the function. A 2n folklore theorem states:1","PeriodicalId":377190,"journal":{"name":"Circuits, Packets, and Protocols","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity Testing and Directed Isoperimetric Inequalities\",\"authors\":\"\",\"doi\":\"10.1145/3568031.3568034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2.1.1 Boolean Isoperimetric Type Theorems n Given a function f : {0, 1} ↦ {0, 1}, define the variance of the function as var(f ) = p(1 − p), where p = Prx[f (x) = 1]. Let Sf denote the set of sensitive edges, that is, the set of pairs (x, y) such that x, y ∈ {0, 1}n differ in exactly one coordinate, f (x) = 1 and f (y) = 0. Let If = |Sf | denote the “total influence” of the function. A 2n folklore theorem states:1\",\"PeriodicalId\":377190,\"journal\":{\"name\":\"Circuits, Packets, and Protocols\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuits, Packets, and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3568031.3568034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Packets, and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568031.3568034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monotonicity Testing and Directed Isoperimetric Inequalities
2.1.1 Boolean Isoperimetric Type Theorems n Given a function f : {0, 1} ↦ {0, 1}, define the variance of the function as var(f ) = p(1 − p), where p = Prx[f (x) = 1]. Let Sf denote the set of sensitive edges, that is, the set of pairs (x, y) such that x, y ∈ {0, 1}n differ in exactly one coordinate, f (x) = 1 and f (y) = 0. Let If = |Sf | denote the “total influence” of the function. A 2n folklore theorem states:1