求解非线性方程的两种新的五阶收敛三步预测校正方法

Yunhong Hu, Liang Fang, G. He
{"title":"求解非线性方程的两种新的五阶收敛三步预测校正方法","authors":"Yunhong Hu, Liang Fang, G. He","doi":"10.1109/CINC.2010.5643799","DOIUrl":null,"url":null,"abstract":"In this paper, we present two new three-step predictor-corrector methods for solving nonlinear equations. This two algorithms are free from second derivative and per iteration they only require three evaluations of the given function and one evaluation of its first derivative. Convergence analysis shows that they are fifth-order convergent. Numerical tests demonstrate that both of the two new methods are more efficient and more practical than most of known variants of two-step methods.","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two new three-step predictor-corrector methods with fifth-order convergence for solving nonlinear equations\",\"authors\":\"Yunhong Hu, Liang Fang, G. He\",\"doi\":\"10.1109/CINC.2010.5643799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present two new three-step predictor-corrector methods for solving nonlinear equations. This two algorithms are free from second derivative and per iteration they only require three evaluations of the given function and one evaluation of its first derivative. Convergence analysis shows that they are fifth-order convergent. Numerical tests demonstrate that both of the two new methods are more efficient and more practical than most of known variants of two-step methods.\",\"PeriodicalId\":227004,\"journal\":{\"name\":\"2010 Second International Conference on Computational Intelligence and Natural Computing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Computational Intelligence and Natural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINC.2010.5643799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了求解非线性方程的两种新的三步预测校正方法。这两种算法不需要二阶导数,并且每次迭代只需要对给定函数求三次求一次导数。收敛性分析表明它们是五阶收敛的。数值试验表明,这两种新方法比大多数已知的两步法更有效,更实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two new three-step predictor-corrector methods with fifth-order convergence for solving nonlinear equations
In this paper, we present two new three-step predictor-corrector methods for solving nonlinear equations. This two algorithms are free from second derivative and per iteration they only require three evaluations of the given function and one evaluation of its first derivative. Convergence analysis shows that they are fifth-order convergent. Numerical tests demonstrate that both of the two new methods are more efficient and more practical than most of known variants of two-step methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信