{"title":"投资组合选择的稳健优化方法:计算与比较分析","authors":"A. Georgantas","doi":"10.26233/heallink.tuc.76532","DOIUrl":null,"url":null,"abstract":"The field of portfolio selection is an active research topic, which combines elements and methodologies from various fields, such as optimization, decision analysis, risk management, data science, forecasting, etc. The modeling and treatment of deep uncertainties for future asset returns is a major issue for the success of analytical portfolio selection models. Recently, robust optimization (RO) models have attracted a lot of interest in this area. RO provides a computationally tractable framework for portfolio optimization based on relatively general assumptions on the probability distributions of the uncertain risk parameters. Thus, RO extends the framework of traditional linear and non-linear models (e.g., the well-known mean-variance model), incorporating uncertainty through a formal and analytical approach into the modeling process. Robust counterparts of existing models can be considered as worst-case re-formulations as far as deviations of the uncertain parameters from their nominal values are concerned. Although several RO models have been proposed in the literature focusing on various risk measures and different types of uncertainty sets about asset returns, analytical empirical assessments of their performance have not been performed in a comprehensive manner. The objective of this study is to fill in this gap in the literature. More specifically, we consider different types of RO models based on popular risk measures and conduct an extensive comparative analysis of their performance using data from the US market during the period 2005-2016.","PeriodicalId":286833,"journal":{"name":"arXiv: Portfolio Management","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Optimization Approaches for Portfolio Selection: A Computational and Comparative Analysis\",\"authors\":\"A. Georgantas\",\"doi\":\"10.26233/heallink.tuc.76532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of portfolio selection is an active research topic, which combines elements and methodologies from various fields, such as optimization, decision analysis, risk management, data science, forecasting, etc. The modeling and treatment of deep uncertainties for future asset returns is a major issue for the success of analytical portfolio selection models. Recently, robust optimization (RO) models have attracted a lot of interest in this area. RO provides a computationally tractable framework for portfolio optimization based on relatively general assumptions on the probability distributions of the uncertain risk parameters. Thus, RO extends the framework of traditional linear and non-linear models (e.g., the well-known mean-variance model), incorporating uncertainty through a formal and analytical approach into the modeling process. Robust counterparts of existing models can be considered as worst-case re-formulations as far as deviations of the uncertain parameters from their nominal values are concerned. Although several RO models have been proposed in the literature focusing on various risk measures and different types of uncertainty sets about asset returns, analytical empirical assessments of their performance have not been performed in a comprehensive manner. The objective of this study is to fill in this gap in the literature. More specifically, we consider different types of RO models based on popular risk measures and conduct an extensive comparative analysis of their performance using data from the US market during the period 2005-2016.\",\"PeriodicalId\":286833,\"journal\":{\"name\":\"arXiv: Portfolio Management\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26233/heallink.tuc.76532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26233/heallink.tuc.76532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Optimization Approaches for Portfolio Selection: A Computational and Comparative Analysis
The field of portfolio selection is an active research topic, which combines elements and methodologies from various fields, such as optimization, decision analysis, risk management, data science, forecasting, etc. The modeling and treatment of deep uncertainties for future asset returns is a major issue for the success of analytical portfolio selection models. Recently, robust optimization (RO) models have attracted a lot of interest in this area. RO provides a computationally tractable framework for portfolio optimization based on relatively general assumptions on the probability distributions of the uncertain risk parameters. Thus, RO extends the framework of traditional linear and non-linear models (e.g., the well-known mean-variance model), incorporating uncertainty through a formal and analytical approach into the modeling process. Robust counterparts of existing models can be considered as worst-case re-formulations as far as deviations of the uncertain parameters from their nominal values are concerned. Although several RO models have been proposed in the literature focusing on various risk measures and different types of uncertainty sets about asset returns, analytical empirical assessments of their performance have not been performed in a comprehensive manner. The objective of this study is to fill in this gap in the literature. More specifically, we consider different types of RO models based on popular risk measures and conduct an extensive comparative analysis of their performance using data from the US market during the period 2005-2016.