{"title":"多平台雷达系统的信道概率集合更新","authors":"R. Romero, C. M. Kenyon, N. Goodman","doi":"10.1109/WDD.2010.5592507","DOIUrl":null,"url":null,"abstract":"Cognitive radar (CR) is a recently proposed concept that depicts the radar channel in a probabilistic manner. In a multiplatform or networked radar system, some parameters or dimensions of interest are visible (i.e., resolvable) to one radar and not to others depending on the geometry of the scenario. For a radar with new measurements, Bayesian methods to update the cell ensemble probabilities in the non-visible parameters are needed. Here, we show how the overall probabilistic understanding of the channel can be updated despite the fact that some cells are non-visible or “ambiguous”. Unfortunately, the number of calculations needed to accomplish a full update is exponentially related to the number of cells. As such, we also introduce a technique that reduces the calculations immensely. Finally, we apply both update techniques to a two-platform radar system trying to form a two-dimensional probability ensemble of the channel.","PeriodicalId":112343,"journal":{"name":"2010 International Waveform Diversity and Design Conference","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Channel probability ensemble update for multiplatform radar systems\",\"authors\":\"R. Romero, C. M. Kenyon, N. Goodman\",\"doi\":\"10.1109/WDD.2010.5592507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cognitive radar (CR) is a recently proposed concept that depicts the radar channel in a probabilistic manner. In a multiplatform or networked radar system, some parameters or dimensions of interest are visible (i.e., resolvable) to one radar and not to others depending on the geometry of the scenario. For a radar with new measurements, Bayesian methods to update the cell ensemble probabilities in the non-visible parameters are needed. Here, we show how the overall probabilistic understanding of the channel can be updated despite the fact that some cells are non-visible or “ambiguous”. Unfortunately, the number of calculations needed to accomplish a full update is exponentially related to the number of cells. As such, we also introduce a technique that reduces the calculations immensely. Finally, we apply both update techniques to a two-platform radar system trying to form a two-dimensional probability ensemble of the channel.\",\"PeriodicalId\":112343,\"journal\":{\"name\":\"2010 International Waveform Diversity and Design Conference\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Waveform Diversity and Design Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WDD.2010.5592507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Waveform Diversity and Design Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WDD.2010.5592507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Channel probability ensemble update for multiplatform radar systems
Cognitive radar (CR) is a recently proposed concept that depicts the radar channel in a probabilistic manner. In a multiplatform or networked radar system, some parameters or dimensions of interest are visible (i.e., resolvable) to one radar and not to others depending on the geometry of the scenario. For a radar with new measurements, Bayesian methods to update the cell ensemble probabilities in the non-visible parameters are needed. Here, we show how the overall probabilistic understanding of the channel can be updated despite the fact that some cells are non-visible or “ambiguous”. Unfortunately, the number of calculations needed to accomplish a full update is exponentially related to the number of cells. As such, we also introduce a technique that reduces the calculations immensely. Finally, we apply both update techniques to a two-platform radar system trying to form a two-dimensional probability ensemble of the channel.