{"title":"硅光子学的超晶格集成","authors":"R. Soref, F. De Leonardis","doi":"10.1109/SiPhotonics55903.2023.10141910","DOIUrl":null,"url":null,"abstract":"Theoretical interband physics indicates that GaP/Si, AlP/Si, ZnS/Si, GaAs/Ge, AlAs/Ge, ZnSe/Ge and AlN/3C/SiC short-period superlattices have very large Pockels-and-nonlinear optical coefficients, transparency from MIR to near/mid-visible, Raman gain, and large Franz-Keldysh response. Heterogeneous integration on 300-mm oxidized silicon wafers appears feasible.","PeriodicalId":105710,"journal":{"name":"2023 IEEE Silicon Photonics Conference (SiPhotonics)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superlattice Integration with Silicon Photonics\",\"authors\":\"R. Soref, F. De Leonardis\",\"doi\":\"10.1109/SiPhotonics55903.2023.10141910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theoretical interband physics indicates that GaP/Si, AlP/Si, ZnS/Si, GaAs/Ge, AlAs/Ge, ZnSe/Ge and AlN/3C/SiC short-period superlattices have very large Pockels-and-nonlinear optical coefficients, transparency from MIR to near/mid-visible, Raman gain, and large Franz-Keldysh response. Heterogeneous integration on 300-mm oxidized silicon wafers appears feasible.\",\"PeriodicalId\":105710,\"journal\":{\"name\":\"2023 IEEE Silicon Photonics Conference (SiPhotonics)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Silicon Photonics Conference (SiPhotonics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPhotonics55903.2023.10141910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Silicon Photonics Conference (SiPhotonics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPhotonics55903.2023.10141910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Theoretical interband physics indicates that GaP/Si, AlP/Si, ZnS/Si, GaAs/Ge, AlAs/Ge, ZnSe/Ge and AlN/3C/SiC short-period superlattices have very large Pockels-and-nonlinear optical coefficients, transparency from MIR to near/mid-visible, Raman gain, and large Franz-Keldysh response. Heterogeneous integration on 300-mm oxidized silicon wafers appears feasible.