{"title":"可解释的深度学习治疗糖尿病视网膜病变","authors":"Mohamed Chetoui, Andy Couturier, M. Akhloufi","doi":"10.1109/CCECE47787.2020.9255773","DOIUrl":null,"url":null,"abstract":"Diabetic Retinopathy (DR) is a retinal lesion due to diabetes. Through blood leaks and excess glucose in the blood vessels, pathological lesions including hemorrhages, exudates and microaneurysms (HM, EX, MA) develop in the eye, which may lead to blindness if not timely treated. In this paper, we propose a deep Convolutional Neural Network (CNN) architecture trained to identify Referable Diabetic Retinopathy (RDR) lesions from retinal fundus images. The model uses a pre-trained network with fine-tuned layers, cosine learning rate decay, and warm up. The efficiency of the proposed architecture has been evaluated on eight public datasets. The results show that the proposed architecture obtains state-of-the-art performance using only publicly available datasets. An explainability algorithm was also developed to show the efficiency of the model in detecting RDR signs.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable Deep Learning for Referable Diabetic Retinopathy\",\"authors\":\"Mohamed Chetoui, Andy Couturier, M. Akhloufi\",\"doi\":\"10.1109/CCECE47787.2020.9255773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic Retinopathy (DR) is a retinal lesion due to diabetes. Through blood leaks and excess glucose in the blood vessels, pathological lesions including hemorrhages, exudates and microaneurysms (HM, EX, MA) develop in the eye, which may lead to blindness if not timely treated. In this paper, we propose a deep Convolutional Neural Network (CNN) architecture trained to identify Referable Diabetic Retinopathy (RDR) lesions from retinal fundus images. The model uses a pre-trained network with fine-tuned layers, cosine learning rate decay, and warm up. The efficiency of the proposed architecture has been evaluated on eight public datasets. The results show that the proposed architecture obtains state-of-the-art performance using only publicly available datasets. An explainability algorithm was also developed to show the efficiency of the model in detecting RDR signs.\",\"PeriodicalId\":296506,\"journal\":{\"name\":\"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE47787.2020.9255773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Explainable Deep Learning for Referable Diabetic Retinopathy
Diabetic Retinopathy (DR) is a retinal lesion due to diabetes. Through blood leaks and excess glucose in the blood vessels, pathological lesions including hemorrhages, exudates and microaneurysms (HM, EX, MA) develop in the eye, which may lead to blindness if not timely treated. In this paper, we propose a deep Convolutional Neural Network (CNN) architecture trained to identify Referable Diabetic Retinopathy (RDR) lesions from retinal fundus images. The model uses a pre-trained network with fine-tuned layers, cosine learning rate decay, and warm up. The efficiency of the proposed architecture has been evaluated on eight public datasets. The results show that the proposed architecture obtains state-of-the-art performance using only publicly available datasets. An explainability algorithm was also developed to show the efficiency of the model in detecting RDR signs.