光催化TiO2-Ag2O/PESf膜去除亚甲基蓝的制备、表征及性能

Zanariah Rajis, N. Azmi, S. Makhtar, M. A. Norddin, A. Mustafa
{"title":"光催化TiO2-Ag2O/PESf膜去除亚甲基蓝的制备、表征及性能","authors":"Zanariah Rajis, N. Azmi, S. Makhtar, M. A. Norddin, A. Mustafa","doi":"10.11113/AMST.V23N2.160","DOIUrl":null,"url":null,"abstract":"This study proposed an effective method of methylene blue (MB) removal using a membrane with photocatalytic properties. The photocatalytic membrane, made of polyethersulfone (PESf) was incorporated with titanium dioxide (TiO2) and silver oxide (Ag2O) as the photocatalyst during the phase inversion process. TiO2 was synthesized using sol-gel method before being modified by Ag2O via wet pre-deposition method. The PESf/TiO2/Ag2O (PTA) membrane was characterized using scanning electron microscope coupled with elementary dispersion X-ray (SEM-EDX), X-ray diffraction analysis (XRD), attenuated Fourier transform infrared (ATR-FTIR), and ultraviolet visible near infrared (UV-vis NIR). The PTA membrane with 0.2 wt.% loading of TiO2/Ag2O shows uniform distribution of the photocatalyst materials and exhibits the highest degradation of MB at 85%. The TiO2/Ag2O presence was confirmed by the crystallinity analysis using XRD. UV-Vis NIR revealed that the band gap of TiO2 reduced from 3.2 to 2.1 eV when modified with Ag2O. This proved that membrane separation assisted with photocatalytic degradation is able to perform high degradation of MB dyes and has potential to be applied in industrial application.","PeriodicalId":326334,"journal":{"name":"Journal of Applied Membrane Science & Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Preparation, Characterization and Performances of Photocatalytic TiO2-Ag2O/PESf Membrane for Methylene Blue Removal\",\"authors\":\"Zanariah Rajis, N. Azmi, S. Makhtar, M. A. Norddin, A. Mustafa\",\"doi\":\"10.11113/AMST.V23N2.160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposed an effective method of methylene blue (MB) removal using a membrane with photocatalytic properties. The photocatalytic membrane, made of polyethersulfone (PESf) was incorporated with titanium dioxide (TiO2) and silver oxide (Ag2O) as the photocatalyst during the phase inversion process. TiO2 was synthesized using sol-gel method before being modified by Ag2O via wet pre-deposition method. The PESf/TiO2/Ag2O (PTA) membrane was characterized using scanning electron microscope coupled with elementary dispersion X-ray (SEM-EDX), X-ray diffraction analysis (XRD), attenuated Fourier transform infrared (ATR-FTIR), and ultraviolet visible near infrared (UV-vis NIR). The PTA membrane with 0.2 wt.% loading of TiO2/Ag2O shows uniform distribution of the photocatalyst materials and exhibits the highest degradation of MB at 85%. The TiO2/Ag2O presence was confirmed by the crystallinity analysis using XRD. UV-Vis NIR revealed that the band gap of TiO2 reduced from 3.2 to 2.1 eV when modified with Ag2O. This proved that membrane separation assisted with photocatalytic degradation is able to perform high degradation of MB dyes and has potential to be applied in industrial application.\",\"PeriodicalId\":326334,\"journal\":{\"name\":\"Journal of Applied Membrane Science & Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Membrane Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/AMST.V23N2.160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Membrane Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/AMST.V23N2.160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种利用光催化膜去除亚甲基蓝的有效方法。在相转化过程中,以二氧化钛(TiO2)和氧化银(Ag2O)为光催化剂,制备了聚醚砜(PESf)光催化膜。TiO2采用溶胶-凝胶法合成,然后用Ag2O湿预沉积法修饰。采用扫描电镜(SEM-EDX)、x射线衍射(XRD)、衰减傅里叶变换红外(ATR-FTIR)和紫外可见近红外(UV-vis NIR)对PESf/TiO2/Ag2O (PTA)膜进行了表征。负载0.2 wt.% TiO2/Ag2O的PTA膜具有均匀分布的光触媒材料,对MB的降解率最高,达到85%。通过XRD结晶度分析证实了TiO2/Ag2O的存在。紫外-可见近红外光谱显示,Ag2O修饰后TiO2的带隙由3.2 eV减小到2.1 eV。这证明了膜分离辅助光催化降解对MB染料具有较高的降解性能,具有工业应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation, Characterization and Performances of Photocatalytic TiO2-Ag2O/PESf Membrane for Methylene Blue Removal
This study proposed an effective method of methylene blue (MB) removal using a membrane with photocatalytic properties. The photocatalytic membrane, made of polyethersulfone (PESf) was incorporated with titanium dioxide (TiO2) and silver oxide (Ag2O) as the photocatalyst during the phase inversion process. TiO2 was synthesized using sol-gel method before being modified by Ag2O via wet pre-deposition method. The PESf/TiO2/Ag2O (PTA) membrane was characterized using scanning electron microscope coupled with elementary dispersion X-ray (SEM-EDX), X-ray diffraction analysis (XRD), attenuated Fourier transform infrared (ATR-FTIR), and ultraviolet visible near infrared (UV-vis NIR). The PTA membrane with 0.2 wt.% loading of TiO2/Ag2O shows uniform distribution of the photocatalyst materials and exhibits the highest degradation of MB at 85%. The TiO2/Ag2O presence was confirmed by the crystallinity analysis using XRD. UV-Vis NIR revealed that the band gap of TiO2 reduced from 3.2 to 2.1 eV when modified with Ag2O. This proved that membrane separation assisted with photocatalytic degradation is able to perform high degradation of MB dyes and has potential to be applied in industrial application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信