基于层次关注网络和BERT的零概率多语言情感分析

A. Sarkar, Sujeeth Reddy, Raghu Sesha Iyengar
{"title":"基于层次关注网络和BERT的零概率多语言情感分析","authors":"A. Sarkar, Sujeeth Reddy, Raghu Sesha Iyengar","doi":"10.1145/3342827.3342850","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is considered an important downstream task in language modelling. We propose Hierarchical Attentive Network using BERT for document sentiment classification. We further showed that importing representation from Multiplicative LSTM model in our architecture results in faster convergence. We then propose a method to build a sentiment classifier for a language in which we have no labelled sentiment data. We exploit the possible semantic invariance across languages in the context of sentiment to achieve this.","PeriodicalId":254461,"journal":{"name":"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Zero-Shot Multilingual Sentiment Analysis using Hierarchical Attentive Network and BERT\",\"authors\":\"A. Sarkar, Sujeeth Reddy, Raghu Sesha Iyengar\",\"doi\":\"10.1145/3342827.3342850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis is considered an important downstream task in language modelling. We propose Hierarchical Attentive Network using BERT for document sentiment classification. We further showed that importing representation from Multiplicative LSTM model in our architecture results in faster convergence. We then propose a method to build a sentiment classifier for a language in which we have no labelled sentiment data. We exploit the possible semantic invariance across languages in the context of sentiment to achieve this.\",\"PeriodicalId\":254461,\"journal\":{\"name\":\"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3342827.3342850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3342827.3342850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

情感分析是语言建模中一项重要的下游任务。我们提出了基于BERT的层次关注网络用于文档情感分类。我们进一步表明,在我们的体系结构中导入来自Multiplicative LSTM模型的表示可以更快地收敛。然后,我们提出了一种方法,为没有标记情感数据的语言构建情感分类器。我们利用情感上下文中可能的跨语言语义不变性来实现这一目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-Shot Multilingual Sentiment Analysis using Hierarchical Attentive Network and BERT
Sentiment analysis is considered an important downstream task in language modelling. We propose Hierarchical Attentive Network using BERT for document sentiment classification. We further showed that importing representation from Multiplicative LSTM model in our architecture results in faster convergence. We then propose a method to build a sentiment classifier for a language in which we have no labelled sentiment data. We exploit the possible semantic invariance across languages in the context of sentiment to achieve this.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信