{"title":"合成孔径声呐图像质量预测","authors":"David P. Williams","doi":"10.1109/ICASSP.2010.5495165","DOIUrl":null,"url":null,"abstract":"This work exploits several machine-learning techniques to address the problem of image-quality prediction of synthetic aperture sonar (SAS) imagery. The objective is to predict the correlation of sonar ping-returns as a function of range from the sonar by using measurements of sonar-platform motion and estimates of environmental characteristics. The environmental characteristics are estimated by effectively performing unsupervised seabed segmentation, which entails extracting wavelet-based features, performing spectral clustering, and learning a variational Bayesian Gaussian mixture model. The motion measurements and environmental features are then used to learn a Gaussian process regression model so that ping correlations can be predicted. To handle issues related to the large size of the data set considered, sparse methods and an out-of-sample extension for spectral clustering are also exploited. The approach is demonstrated on an enormous data set of real SAS images collected in the Baltic Sea.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Image-quality prediction of synthetic aperture sonar imagery\",\"authors\":\"David P. Williams\",\"doi\":\"10.1109/ICASSP.2010.5495165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work exploits several machine-learning techniques to address the problem of image-quality prediction of synthetic aperture sonar (SAS) imagery. The objective is to predict the correlation of sonar ping-returns as a function of range from the sonar by using measurements of sonar-platform motion and estimates of environmental characteristics. The environmental characteristics are estimated by effectively performing unsupervised seabed segmentation, which entails extracting wavelet-based features, performing spectral clustering, and learning a variational Bayesian Gaussian mixture model. The motion measurements and environmental features are then used to learn a Gaussian process regression model so that ping correlations can be predicted. To handle issues related to the large size of the data set considered, sparse methods and an out-of-sample extension for spectral clustering are also exploited. The approach is demonstrated on an enormous data set of real SAS images collected in the Baltic Sea.\",\"PeriodicalId\":293333,\"journal\":{\"name\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2010.5495165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5495165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image-quality prediction of synthetic aperture sonar imagery
This work exploits several machine-learning techniques to address the problem of image-quality prediction of synthetic aperture sonar (SAS) imagery. The objective is to predict the correlation of sonar ping-returns as a function of range from the sonar by using measurements of sonar-platform motion and estimates of environmental characteristics. The environmental characteristics are estimated by effectively performing unsupervised seabed segmentation, which entails extracting wavelet-based features, performing spectral clustering, and learning a variational Bayesian Gaussian mixture model. The motion measurements and environmental features are then used to learn a Gaussian process regression model so that ping correlations can be predicted. To handle issues related to the large size of the data set considered, sparse methods and an out-of-sample extension for spectral clustering are also exploited. The approach is demonstrated on an enormous data set of real SAS images collected in the Baltic Sea.