重量级代码

G. Cohen, P. Solé, A. Tchamkerten
{"title":"重量级代码","authors":"G. Cohen, P. Solé, A. Tchamkerten","doi":"10.1109/ISIT.2010.5513691","DOIUrl":null,"url":null,"abstract":"Motivated by certain recent problems in asynchronous communication, we introduce and study B(n, d, w), defined as the maximum number of length n binary sequences with minimum distance d, and such that each sequence has weight at least w. Specifically, we investigate the asymptotic exponential growth rate of B(n, d, w) with respect to n and with fixed ratios δ = d/n and ω = w/n. For ω ∈ [0, 1/2], this growth rate function b(δ, ω) is shown to be equal to a(δ), the asymptotic exponential growth rate of A(n, d) — the maximum number of length n binary sequences with minimum distance d. For ω ∈ (1/2, 1], we show that b(δ, ω) ≤ a(δ, ω) + f(ω), where a(δ, ω) denotes the asymptotic exponential growth rate of A(n, d, w), the maximum number of length n binary sequences with minimum distance d and constant weight w, and where f(w) is a certain function that satisfies 0 < f(ω) < 0.088 and lim<inf>ω→1</inf> f(ω) = lim<inf>ω→1/2</inf> f(ω) = 0. Based on numerical evidence, we conjecture that b(δ, ω) is actually equal to a(δ, ω) for ω ∈ (1/2, 1]. Finally, lower bounds on B(n, d, w) are obtained via explicit code constructions.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Heavy weight codes\",\"authors\":\"G. Cohen, P. Solé, A. Tchamkerten\",\"doi\":\"10.1109/ISIT.2010.5513691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by certain recent problems in asynchronous communication, we introduce and study B(n, d, w), defined as the maximum number of length n binary sequences with minimum distance d, and such that each sequence has weight at least w. Specifically, we investigate the asymptotic exponential growth rate of B(n, d, w) with respect to n and with fixed ratios δ = d/n and ω = w/n. For ω ∈ [0, 1/2], this growth rate function b(δ, ω) is shown to be equal to a(δ), the asymptotic exponential growth rate of A(n, d) — the maximum number of length n binary sequences with minimum distance d. For ω ∈ (1/2, 1], we show that b(δ, ω) ≤ a(δ, ω) + f(ω), where a(δ, ω) denotes the asymptotic exponential growth rate of A(n, d, w), the maximum number of length n binary sequences with minimum distance d and constant weight w, and where f(w) is a certain function that satisfies 0 < f(ω) < 0.088 and lim<inf>ω→1</inf> f(ω) = lim<inf>ω→1/2</inf> f(ω) = 0. Based on numerical evidence, we conjecture that b(δ, ω) is actually equal to a(δ, ω) for ω ∈ (1/2, 1]. Finally, lower bounds on B(n, d, w) are obtained via explicit code constructions.\",\"PeriodicalId\":147055,\"journal\":{\"name\":\"2010 IEEE International Symposium on Information Theory\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2010.5513691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

基于异步通信中最近出现的一些问题,我们引入并研究了B(n, d, w), B(n, d, w)定义为长度为n且距离为d的最小二值序列的最大个数,且每个序列的权值至少为w。具体而言,我们研究了B(n, d, w)相对于n的渐近指数增长率,且固定比值δ = d/n和ω = w/n。对于ω∈[0,1 /2],这个增长率函数b(δ, ω)等于a(δ),即a(n, d) -的渐近指数增长率对于ω∈(1/2,1),我们证明b(δ, ω)≤a(δ, ω) + f(ω),其中a(δ, ω)表示a(n, d, w)的渐近指数增长率,最小距离d且权值w的长度n的二进制序列的最大数目,其中f(w)是满足0 < f(ω) < 0.088且limω→1 f(ω) = limω→1/2 f(ω) = 0的某个函数。基于数值证据,我们推测,对于ω∈(1/ 2,1),b(δ, ω)实际上等于a(δ, ω)。最后,通过显式代码构造得到B(n, d, w)的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heavy weight codes
Motivated by certain recent problems in asynchronous communication, we introduce and study B(n, d, w), defined as the maximum number of length n binary sequences with minimum distance d, and such that each sequence has weight at least w. Specifically, we investigate the asymptotic exponential growth rate of B(n, d, w) with respect to n and with fixed ratios δ = d/n and ω = w/n. For ω ∈ [0, 1/2], this growth rate function b(δ, ω) is shown to be equal to a(δ), the asymptotic exponential growth rate of A(n, d) — the maximum number of length n binary sequences with minimum distance d. For ω ∈ (1/2, 1], we show that b(δ, ω) ≤ a(δ, ω) + f(ω), where a(δ, ω) denotes the asymptotic exponential growth rate of A(n, d, w), the maximum number of length n binary sequences with minimum distance d and constant weight w, and where f(w) is a certain function that satisfies 0 < f(ω) < 0.088 and limω→1 f(ω) = limω→1/2 f(ω) = 0. Based on numerical evidence, we conjecture that b(δ, ω) is actually equal to a(δ, ω) for ω ∈ (1/2, 1]. Finally, lower bounds on B(n, d, w) are obtained via explicit code constructions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信