用固定精度乘法器数据路径实现任意精度模乘法

J. Großschädl, E. Savaş, Kazim Yumbul
{"title":"用固定精度乘法器数据路径实现任意精度模乘法","authors":"J. Großschädl, E. Savaş, Kazim Yumbul","doi":"10.1109/ReConFig.2009.83","DOIUrl":null,"url":null,"abstract":"Within the context of cryptographic hardware, the term scalability refers to the ability to process operands of any size, regardless of the precision of the underlying datapath or registers. In this paper we present a simple yet effective technique for increasing the scalability of a fixed-precision Montgomery multiplier. Our idea is to extend the datapath of a Montgomery multiplier in such a way that it can also perform an ordinary multiplication of two n-bit operands (without modular reduction), yielding a 2n-bit result. This conventional (n*n-≫2n)-bit multiplication is then used as a \"sub-routine\" to realize arbitrary-precision Montgomery multiplication according to standard software algorithms such as Coarsely Integrated Operand Scanning (CIOS). We show that performing a 2n-bit modular multiplication on an n-bit multiplier can be done in 5n clock cycles, whereby we assume that the n-bit modular multiplication takes $n$ cycles. Extending a Montgomery multiplier for this extra functionality requires just some minor modifications of the datapath and entails a slight increase in silicon area.","PeriodicalId":325631,"journal":{"name":"2009 International Conference on Reconfigurable Computing and FPGAs","volume":"1238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realizing Arbitrary-Precision Modular Multiplication with a Fixed-Precision Multiplier Datapath\",\"authors\":\"J. Großschädl, E. Savaş, Kazim Yumbul\",\"doi\":\"10.1109/ReConFig.2009.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the context of cryptographic hardware, the term scalability refers to the ability to process operands of any size, regardless of the precision of the underlying datapath or registers. In this paper we present a simple yet effective technique for increasing the scalability of a fixed-precision Montgomery multiplier. Our idea is to extend the datapath of a Montgomery multiplier in such a way that it can also perform an ordinary multiplication of two n-bit operands (without modular reduction), yielding a 2n-bit result. This conventional (n*n-≫2n)-bit multiplication is then used as a \\\"sub-routine\\\" to realize arbitrary-precision Montgomery multiplication according to standard software algorithms such as Coarsely Integrated Operand Scanning (CIOS). We show that performing a 2n-bit modular multiplication on an n-bit multiplier can be done in 5n clock cycles, whereby we assume that the n-bit modular multiplication takes $n$ cycles. Extending a Montgomery multiplier for this extra functionality requires just some minor modifications of the datapath and entails a slight increase in silicon area.\",\"PeriodicalId\":325631,\"journal\":{\"name\":\"2009 International Conference on Reconfigurable Computing and FPGAs\",\"volume\":\"1238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Reconfigurable Computing and FPGAs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReConFig.2009.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Reconfigurable Computing and FPGAs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2009.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在加密硬件的上下文中,术语可伸缩性是指处理任何大小的操作数的能力,而不考虑底层数据路径或寄存器的精度。本文提出了一种简单而有效的方法来提高定精度蒙哥马利乘法器的可扩展性。我们的想法是扩展Montgomery乘法器的数据路径,这样它也可以执行两个n位操作数的普通乘法(不需要模块化约简),从而产生2n位结果。这种传统的(n*n- > 2n)位乘法被用作“子程序”,根据标准软件算法(如粗集成操作数扫描(CIOS))实现任意精度的蒙哥马利乘法。我们证明在n位乘法器上执行2n位模乘法可以在5n个时钟周期内完成,因此我们假设n位模乘法需要$n$个周期。为这个额外的功能扩展Montgomery乘法器只需要对数据路径进行一些小的修改,并且需要稍微增加芯片面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realizing Arbitrary-Precision Modular Multiplication with a Fixed-Precision Multiplier Datapath
Within the context of cryptographic hardware, the term scalability refers to the ability to process operands of any size, regardless of the precision of the underlying datapath or registers. In this paper we present a simple yet effective technique for increasing the scalability of a fixed-precision Montgomery multiplier. Our idea is to extend the datapath of a Montgomery multiplier in such a way that it can also perform an ordinary multiplication of two n-bit operands (without modular reduction), yielding a 2n-bit result. This conventional (n*n-≫2n)-bit multiplication is then used as a "sub-routine" to realize arbitrary-precision Montgomery multiplication according to standard software algorithms such as Coarsely Integrated Operand Scanning (CIOS). We show that performing a 2n-bit modular multiplication on an n-bit multiplier can be done in 5n clock cycles, whereby we assume that the n-bit modular multiplication takes $n$ cycles. Extending a Montgomery multiplier for this extra functionality requires just some minor modifications of the datapath and entails a slight increase in silicon area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信