在多项式时间内计算根的和

J. Blomer
{"title":"在多项式时间内计算根的和","authors":"J. Blomer","doi":"10.1109/SFCS.1991.185434","DOIUrl":null,"url":null,"abstract":"For a certain sum of radicals the author presents a Monte Carlo algorithm that runs in polynomial time to decide whether the sum is contained in some number field Q( alpha ), and, if so, its coefficient representation in Q( alpha ) is computed. As a special case the algorithm decides whether the sum is zero. The main algorithm is based on a subalgorithm which is of interest in its own right. This algorithm uses probabilistic methods to check for an element beta of an arbitrary (not necessarily) real algebraic number field Q( alpha ) and some positive rational integer r whether there exists an rth root of beta in Q( alpha ).<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Computing sums of radicals in polynomial time\",\"authors\":\"J. Blomer\",\"doi\":\"10.1109/SFCS.1991.185434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a certain sum of radicals the author presents a Monte Carlo algorithm that runs in polynomial time to decide whether the sum is contained in some number field Q( alpha ), and, if so, its coefficient representation in Q( alpha ) is computed. As a special case the algorithm decides whether the sum is zero. The main algorithm is based on a subalgorithm which is of interest in its own right. This algorithm uses probabilistic methods to check for an element beta of an arbitrary (not necessarily) real algebraic number field Q( alpha ) and some positive rational integer r whether there exists an rth root of beta in Q( alpha ).<<ETX>>\",\"PeriodicalId\":320781,\"journal\":{\"name\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1991.185434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

对于一定的根号和,本文提出了一种蒙特卡罗算法,该算法在多项式时间内确定该根号和是否包含在某个数域Q(alpha)中,如果包含,则计算其系数在Q(alpha)中的表示。作为一种特殊情况,算法决定和是否为零。主算法是基于子算法的,子算法本身就很有趣。该算法使用概率方法来检验任意(不一定)实数域Q(α)和正有理数r中的元素β,在Q(α)中是否存在β的n次根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing sums of radicals in polynomial time
For a certain sum of radicals the author presents a Monte Carlo algorithm that runs in polynomial time to decide whether the sum is contained in some number field Q( alpha ), and, if so, its coefficient representation in Q( alpha ) is computed. As a special case the algorithm decides whether the sum is zero. The main algorithm is based on a subalgorithm which is of interest in its own right. This algorithm uses probabilistic methods to check for an element beta of an arbitrary (not necessarily) real algebraic number field Q( alpha ) and some positive rational integer r whether there exists an rth root of beta in Q( alpha ).<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信