基于条件生成对抗网络的果蝇胚胎轮廓提取

Hui Huang, Zhoutao Wang, Y. Gong, Qingzhen Xu
{"title":"基于条件生成对抗网络的果蝇胚胎轮廓提取","authors":"Hui Huang, Zhoutao Wang, Y. Gong, Qingzhen Xu","doi":"10.1109/ICDH.2018.00022","DOIUrl":null,"url":null,"abstract":"High-quality Drosophila embryo images can provide reliable data sources for the research of gene expression and gene interaction. Based on the Drosophila embryo images, a FEMine system is constructed to assist geneticists in quickly mining information for analysis. The extraction of interested Drosophila embryo is an important pretreatment in the FEMine systems. In this paper, taking contour extraction task as image generation task, we proposed a conditional generative adversarial network to generate contour maps of the same size as input images. Based on the Drosophila embryo manual dataset DEDS(Drosophila embryo Dataset)1, for each of the ground-truth, we turn the regions of the interested Drosophila embryo into contours of that. The experiments on DEDS demonstrate that our framework can efficiently extract the contours of the interested Drosophila embryos.","PeriodicalId":117854,"journal":{"name":"2018 7th International Conference on Digital Home (ICDH)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Contour Extraction of Drosophila Embryos Based on Conditional Generative Adversarial Nets\",\"authors\":\"Hui Huang, Zhoutao Wang, Y. Gong, Qingzhen Xu\",\"doi\":\"10.1109/ICDH.2018.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-quality Drosophila embryo images can provide reliable data sources for the research of gene expression and gene interaction. Based on the Drosophila embryo images, a FEMine system is constructed to assist geneticists in quickly mining information for analysis. The extraction of interested Drosophila embryo is an important pretreatment in the FEMine systems. In this paper, taking contour extraction task as image generation task, we proposed a conditional generative adversarial network to generate contour maps of the same size as input images. Based on the Drosophila embryo manual dataset DEDS(Drosophila embryo Dataset)1, for each of the ground-truth, we turn the regions of the interested Drosophila embryo into contours of that. The experiments on DEDS demonstrate that our framework can efficiently extract the contours of the interested Drosophila embryos.\",\"PeriodicalId\":117854,\"journal\":{\"name\":\"2018 7th International Conference on Digital Home (ICDH)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th International Conference on Digital Home (ICDH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDH.2018.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Conference on Digital Home (ICDH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH.2018.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高质量的果蝇胚胎图像可以为基因表达和基因相互作用的研究提供可靠的数据来源。基于果蝇胚胎图像,构建了一个FEMine系统,以帮助遗传学家快速挖掘信息进行分析。感兴趣果蝇胚胎的提取是雌性系统中重要的预处理工作。本文将轮廓提取任务作为图像生成任务,提出了一种条件生成对抗网络来生成与输入图像大小相同的轮廓图。基于果蝇胚胎手册数据集DEDS(Drosophila embryo dataset)1,对于每个ground-truth,我们将感兴趣的果蝇胚胎区域转换为该区域的轮廓。在DEDS上的实验表明,我们的框架可以有效地提取感兴趣的果蝇胚胎的轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contour Extraction of Drosophila Embryos Based on Conditional Generative Adversarial Nets
High-quality Drosophila embryo images can provide reliable data sources for the research of gene expression and gene interaction. Based on the Drosophila embryo images, a FEMine system is constructed to assist geneticists in quickly mining information for analysis. The extraction of interested Drosophila embryo is an important pretreatment in the FEMine systems. In this paper, taking contour extraction task as image generation task, we proposed a conditional generative adversarial network to generate contour maps of the same size as input images. Based on the Drosophila embryo manual dataset DEDS(Drosophila embryo Dataset)1, for each of the ground-truth, we turn the regions of the interested Drosophila embryo into contours of that. The experiments on DEDS demonstrate that our framework can efficiently extract the contours of the interested Drosophila embryos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信