生物药物反应网络的途径优化

Chien-Feng Huang, C. Forst
{"title":"生物药物反应网络的途径优化","authors":"Chien-Feng Huang, C. Forst","doi":"10.1109/CIBCB.2005.1594902","DOIUrl":null,"url":null,"abstract":"One of the major challenges in systems biology today is to devise generally robust methods of interpreting data concerning the expression levels of the genes in an organism in a way that will shed light on the complex relationships between multiple genes and their products. The ability to better understand and predict the structures and actions of complex biological systems is of significant importance to modern drug discovery as well as our understanding of the mechanisms behind an organism’s ability to react to its environment. In this paper we present a study for robust biological pathway construction through genetic algorithms. The platform is based on the construction of biological networks given different sets of interaction information and the optimization of sub-networks constrained by the gene expression data. As an application, expression data of drug response in M. tuberculosis is used to build generic response subnetworks. Subnetworks are then compared to identify the essential key components that are common to different networks. We are thus able to identify essential nodes in specific drug response. We expect that this approach will provide robust prediction of response networks and accelerate target identification for drug development in the future.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pathway Optimization of Biological Drug Response Networks\",\"authors\":\"Chien-Feng Huang, C. Forst\",\"doi\":\"10.1109/CIBCB.2005.1594902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the major challenges in systems biology today is to devise generally robust methods of interpreting data concerning the expression levels of the genes in an organism in a way that will shed light on the complex relationships between multiple genes and their products. The ability to better understand and predict the structures and actions of complex biological systems is of significant importance to modern drug discovery as well as our understanding of the mechanisms behind an organism’s ability to react to its environment. In this paper we present a study for robust biological pathway construction through genetic algorithms. The platform is based on the construction of biological networks given different sets of interaction information and the optimization of sub-networks constrained by the gene expression data. As an application, expression data of drug response in M. tuberculosis is used to build generic response subnetworks. Subnetworks are then compared to identify the essential key components that are common to different networks. We are thus able to identify essential nodes in specific drug response. We expect that this approach will provide robust prediction of response networks and accelerate target identification for drug development in the future.\",\"PeriodicalId\":330810,\"journal\":{\"name\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2005.1594902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当今系统生物学的主要挑战之一是设计出一种普遍可靠的方法来解释有关生物体中基因表达水平的数据,这种方法将揭示多个基因及其产物之间的复杂关系。更好地理解和预测复杂生物系统的结构和作用的能力对现代药物发现以及我们对生物体对其环境作出反应的能力背后的机制的理解具有重要意义。本文提出了一种基于遗传算法的鲁棒生物通路构建方法。该平台基于给定不同交互信息集的生物网络构建和受基因表达数据约束的子网络优化。作为一种应用,利用结核分枝杆菌药物反应的表达数据来构建通用反应子网络。然后对子网进行比较,以确定不同网络共有的基本关键组件。因此,我们能够确定特定药物反应的基本节点。我们期望这种方法将为未来的药物开发提供可靠的反应网络预测和加速目标识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pathway Optimization of Biological Drug Response Networks
One of the major challenges in systems biology today is to devise generally robust methods of interpreting data concerning the expression levels of the genes in an organism in a way that will shed light on the complex relationships between multiple genes and their products. The ability to better understand and predict the structures and actions of complex biological systems is of significant importance to modern drug discovery as well as our understanding of the mechanisms behind an organism’s ability to react to its environment. In this paper we present a study for robust biological pathway construction through genetic algorithms. The platform is based on the construction of biological networks given different sets of interaction information and the optimization of sub-networks constrained by the gene expression data. As an application, expression data of drug response in M. tuberculosis is used to build generic response subnetworks. Subnetworks are then compared to identify the essential key components that are common to different networks. We are thus able to identify essential nodes in specific drug response. We expect that this approach will provide robust prediction of response networks and accelerate target identification for drug development in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信