利用遗传算法进化人工生物的脉冲神经网络

E. Eskandari, A. Ahmadi, S. Gomar, M. Ahmadi, M. Saif
{"title":"利用遗传算法进化人工生物的脉冲神经网络","authors":"E. Eskandari, A. Ahmadi, S. Gomar, M. Ahmadi, M. Saif","doi":"10.1109/IJCNN.2016.7727228","DOIUrl":null,"url":null,"abstract":"This paper presents a Genetic Algorithm (GA) based evolution framework in which Spiking Neural Network (SNN) of single or a colony of artificial creatures are evolved for higher chance of survival in a virtual environment. The artificial creatures are composed of randomly connected Izhikevich spiking reservoir neural networks. Inspired by biological neurons, the neuronal connections are considered with different axonal conduction delays. Simulation results prove that the evolutionary algorithm has the capability to find or synthesis artificial creatures which can survive in the environment successfully and also simulations verify that colony approach has a better performance in comparison with a single complex creature.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Evolving Spiking Neural Networks of artificial creatures using Genetic Algorithm\",\"authors\":\"E. Eskandari, A. Ahmadi, S. Gomar, M. Ahmadi, M. Saif\",\"doi\":\"10.1109/IJCNN.2016.7727228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Genetic Algorithm (GA) based evolution framework in which Spiking Neural Network (SNN) of single or a colony of artificial creatures are evolved for higher chance of survival in a virtual environment. The artificial creatures are composed of randomly connected Izhikevich spiking reservoir neural networks. Inspired by biological neurons, the neuronal connections are considered with different axonal conduction delays. Simulation results prove that the evolutionary algorithm has the capability to find or synthesis artificial creatures which can survive in the environment successfully and also simulations verify that colony approach has a better performance in comparison with a single complex creature.\",\"PeriodicalId\":109405,\"journal\":{\"name\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2016.7727228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种基于遗传算法的进化框架,在该框架中,单个或一群人工生物的峰值神经网络(SNN)在虚拟环境中获得更高的生存机会。人工生物由随机连接的Izhikevich尖峰水库神经网络组成。受生物神经元的启发,神经元连接被认为具有不同的轴突传导延迟。仿真结果表明,该进化算法具有寻找或合成能够在环境中成功生存的人工生物的能力,并验证了群体方法比单个复杂生物具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving Spiking Neural Networks of artificial creatures using Genetic Algorithm
This paper presents a Genetic Algorithm (GA) based evolution framework in which Spiking Neural Network (SNN) of single or a colony of artificial creatures are evolved for higher chance of survival in a virtual environment. The artificial creatures are composed of randomly connected Izhikevich spiking reservoir neural networks. Inspired by biological neurons, the neuronal connections are considered with different axonal conduction delays. Simulation results prove that the evolutionary algorithm has the capability to find or synthesis artificial creatures which can survive in the environment successfully and also simulations verify that colony approach has a better performance in comparison with a single complex creature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信