基于自适应复值采样方法的互连电路宽带简化建模

Hai Wang, S. Tan, Gengsheng Chen
{"title":"基于自适应复值采样方法的互连电路宽带简化建模","authors":"Hai Wang, S. Tan, Gengsheng Chen","doi":"10.1109/ASPDAC.2010.5419924","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new wideband model order reduction method for interconnect circuits by using a novel adaptive sampling and error estimation scheme. We try to address the outstanding error control problems in the existing sampling-based reduction framework. In the new method, called WBMOR, we explicitly compute the exact residual errors to guide the sampling process. We show that by sampling along the imaginary axis and performing a new complex-valued reduction, the reduced model will match exactly with the original model at the sample points. We show theoretically that the proposed method can achieve the error bound over a given frequency range. Practically the new algorithm can help designers choose the best order of the reduced model for the given frequency range and error bound via adaptive sampling scheme. As a result, it can perform wideband accurate reductions of interconnect circuits for analog and RF applications. We compare several sampling schemes such as linear, logarithmic, and recently proposed re-sampling methods. Experimental results on a number of RLC circuits show that WBMOR is much more accurate than all the other simple sampling methods and the recently proposed re-sampling scheme with the same reduction orders. Compared with the real-valued sampling methods, the complex-valued sampling method is more accurate for the same computational costs.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Wideband reduced modeling of interconnect circuits by adaptive complex-valued sampling method\",\"authors\":\"Hai Wang, S. Tan, Gengsheng Chen\",\"doi\":\"10.1109/ASPDAC.2010.5419924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new wideband model order reduction method for interconnect circuits by using a novel adaptive sampling and error estimation scheme. We try to address the outstanding error control problems in the existing sampling-based reduction framework. In the new method, called WBMOR, we explicitly compute the exact residual errors to guide the sampling process. We show that by sampling along the imaginary axis and performing a new complex-valued reduction, the reduced model will match exactly with the original model at the sample points. We show theoretically that the proposed method can achieve the error bound over a given frequency range. Practically the new algorithm can help designers choose the best order of the reduced model for the given frequency range and error bound via adaptive sampling scheme. As a result, it can perform wideband accurate reductions of interconnect circuits for analog and RF applications. We compare several sampling schemes such as linear, logarithmic, and recently proposed re-sampling methods. Experimental results on a number of RLC circuits show that WBMOR is much more accurate than all the other simple sampling methods and the recently proposed re-sampling scheme with the same reduction orders. Compared with the real-valued sampling methods, the complex-valued sampling method is more accurate for the same computational costs.\",\"PeriodicalId\":152569,\"journal\":{\"name\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2010.5419924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的互连电路宽带模型降阶方法,该方法采用了一种新的自适应采样和误差估计方案。我们试图解决现有的基于采样的约简框架中突出的误差控制问题。在WBMOR方法中,我们明确地计算精确的残差来指导采样过程。我们表明,通过沿虚轴采样并执行新的复值约简,简化后的模型将在样本点与原始模型精确匹配。从理论上证明了该方法可以实现给定频率范围内的误差界。实际上,该算法可以通过自适应采样方案帮助设计者在给定的频率范围和误差范围内选择简化模型的最佳阶数。因此,它可以执行宽带精确减少互连电路的模拟和射频应用。我们比较了几种抽样方案,如线性、对数和最近提出的重新抽样方法。在多个RLC电路上的实验结果表明,WBMOR比其他所有简单的采样方法和最近提出的具有相同降阶的重采样方案都要准确得多。与实值采样方法相比,复值采样方法在计算量相同的情况下精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wideband reduced modeling of interconnect circuits by adaptive complex-valued sampling method
In this paper, we propose a new wideband model order reduction method for interconnect circuits by using a novel adaptive sampling and error estimation scheme. We try to address the outstanding error control problems in the existing sampling-based reduction framework. In the new method, called WBMOR, we explicitly compute the exact residual errors to guide the sampling process. We show that by sampling along the imaginary axis and performing a new complex-valued reduction, the reduced model will match exactly with the original model at the sample points. We show theoretically that the proposed method can achieve the error bound over a given frequency range. Practically the new algorithm can help designers choose the best order of the reduced model for the given frequency range and error bound via adaptive sampling scheme. As a result, it can perform wideband accurate reductions of interconnect circuits for analog and RF applications. We compare several sampling schemes such as linear, logarithmic, and recently proposed re-sampling methods. Experimental results on a number of RLC circuits show that WBMOR is much more accurate than all the other simple sampling methods and the recently proposed re-sampling scheme with the same reduction orders. Compared with the real-valued sampling methods, the complex-valued sampling method is more accurate for the same computational costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信