{"title":"同伦商与等变上同调","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.10","DOIUrl":null,"url":null,"abstract":"This chapter investigates two candidates for equivariant cohomology and explains why it settles on the Borel construction, also called Cartan's mixing construction. Let G be a topological group and M a left G-space. The Borel construction mixes the weakly contractible total space of a principal bundle with the G-space M to produce a homotopy quotient of M. Equivariant cohomology is the cohomology of the homotopy quotient. More generally, given a G-space M, Cartan's mixing construction turns a principal bundle with fiber G into a fiber bundle with fiber M. Cartan's mixing construction fits into the Cartan's mixing diagram, a powerful tool for dealing with equivariant cohomology.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotopy Quotients and Equivariant Cohomology\",\"authors\":\"L. Tu\",\"doi\":\"10.2307/j.ctvrdf1gz.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter investigates two candidates for equivariant cohomology and explains why it settles on the Borel construction, also called Cartan's mixing construction. Let G be a topological group and M a left G-space. The Borel construction mixes the weakly contractible total space of a principal bundle with the G-space M to produce a homotopy quotient of M. Equivariant cohomology is the cohomology of the homotopy quotient. More generally, given a G-space M, Cartan's mixing construction turns a principal bundle with fiber G into a fiber bundle with fiber M. Cartan's mixing construction fits into the Cartan's mixing diagram, a powerful tool for dealing with equivariant cohomology.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvrdf1gz.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter investigates two candidates for equivariant cohomology and explains why it settles on the Borel construction, also called Cartan's mixing construction. Let G be a topological group and M a left G-space. The Borel construction mixes the weakly contractible total space of a principal bundle with the G-space M to produce a homotopy quotient of M. Equivariant cohomology is the cohomology of the homotopy quotient. More generally, given a G-space M, Cartan's mixing construction turns a principal bundle with fiber G into a fiber bundle with fiber M. Cartan's mixing construction fits into the Cartan's mixing diagram, a powerful tool for dealing with equivariant cohomology.