{"title":"主题演讲摘要:安全与安保是自动驾驶的核心","authors":"K. Khouri","doi":"10.1109/EMC2.2018.00006","DOIUrl":null,"url":null,"abstract":"The automotive industry is undergoing a revolution with connected, autonomous and electric vehicles and the benefits they can bring to the public. Drivers enjoying their daily commute, fewer road fatalities and less pollution are all possible thanks to new technologies. Car makers need to offer these features but at the same time make sure vehicles are safe and secure. In the coming years, there will be various levels of automation until we have fully autonomous vehicles. To achieve any level of automation, cars need to connect to other vehicles, connect to the infrastructure, sense the environment through various sensors such as camera and radar and then make maneuvering decisions based on all these inputs. Artificial intelligence is and will be deployed heavily to accomplish many of the tasks of autonomous driving. Perception and decision-making based on artificial intelligence introduces an entirely new set of challenges to car makers to ensure no security compromises as well as proving the decisions being made are functionally, behaviorally and environmentally safe. The challenge can be described in a simple question: \"If a machine learning based car system is accurate 99% of the time, are you willing to ride this car knowing that it will be wrong 1% of the time? What is the consequence of that incorrect decision?\" Deep expertise and research in the safety and security aspects of AI are needed to ensure future mass deployment and success in the area of autonomous driving.","PeriodicalId":377872,"journal":{"name":"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Keynote Abstract: Safety and Security at the Heart of Autonomous Driving\",\"authors\":\"K. Khouri\",\"doi\":\"10.1109/EMC2.2018.00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automotive industry is undergoing a revolution with connected, autonomous and electric vehicles and the benefits they can bring to the public. Drivers enjoying their daily commute, fewer road fatalities and less pollution are all possible thanks to new technologies. Car makers need to offer these features but at the same time make sure vehicles are safe and secure. In the coming years, there will be various levels of automation until we have fully autonomous vehicles. To achieve any level of automation, cars need to connect to other vehicles, connect to the infrastructure, sense the environment through various sensors such as camera and radar and then make maneuvering decisions based on all these inputs. Artificial intelligence is and will be deployed heavily to accomplish many of the tasks of autonomous driving. Perception and decision-making based on artificial intelligence introduces an entirely new set of challenges to car makers to ensure no security compromises as well as proving the decisions being made are functionally, behaviorally and environmentally safe. The challenge can be described in a simple question: \\\"If a machine learning based car system is accurate 99% of the time, are you willing to ride this car knowing that it will be wrong 1% of the time? What is the consequence of that incorrect decision?\\\" Deep expertise and research in the safety and security aspects of AI are needed to ensure future mass deployment and success in the area of autonomous driving.\",\"PeriodicalId\":377872,\"journal\":{\"name\":\"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMC2.2018.00006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMC2.2018.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Keynote Abstract: Safety and Security at the Heart of Autonomous Driving
The automotive industry is undergoing a revolution with connected, autonomous and electric vehicles and the benefits they can bring to the public. Drivers enjoying their daily commute, fewer road fatalities and less pollution are all possible thanks to new technologies. Car makers need to offer these features but at the same time make sure vehicles are safe and secure. In the coming years, there will be various levels of automation until we have fully autonomous vehicles. To achieve any level of automation, cars need to connect to other vehicles, connect to the infrastructure, sense the environment through various sensors such as camera and radar and then make maneuvering decisions based on all these inputs. Artificial intelligence is and will be deployed heavily to accomplish many of the tasks of autonomous driving. Perception and decision-making based on artificial intelligence introduces an entirely new set of challenges to car makers to ensure no security compromises as well as proving the decisions being made are functionally, behaviorally and environmentally safe. The challenge can be described in a simple question: "If a machine learning based car system is accurate 99% of the time, are you willing to ride this car knowing that it will be wrong 1% of the time? What is the consequence of that incorrect decision?" Deep expertise and research in the safety and security aspects of AI are needed to ensure future mass deployment and success in the area of autonomous driving.