{"title":"基于小波的表面肌电信号分析量化站立早期踝关节肌肉共收缩","authors":"F. Nardo, Martina Morano, S. Fioretti","doi":"10.1109/MeMeA54994.2022.9856465","DOIUrl":null,"url":null,"abstract":"The present study involves Continuous Wavelet Transform (CWT) for the analysis of surface electromyographic (sEM G) signals, with the aim of assessing muscle co-contraction during early stance of healthy-subj ect walking. CWT approach allows computing the coscalogram function, a localized statistical assessment of cross-energy density between two signals. In this study, CWT coscalogram function between two sEMG signals from antagonist muscles is used to quantify muscular co-contraction activity. Daubechies of order 4 (factorization in 6 levels) is adopted as mother wavelet. Noise reduction in the sEMG signals is performed applying CWT denoising. Co-contractions between gastrocnemius lateralis and tibialis anterior are assessed on a set of experimental sEM G signals acquired in 15 able-bodied subjects during walking. Results show as the present CWT approach can provide a reliable assessment of co-contraction in early-stance phase of walking, highlighting that this co-contraction is short (< 1 0 ms) and very frequent. A large variability in the occurrence of the co-contraction is also detected, suggesting that each subject adopts her/his own modality of co-contraction. However, the same physiological purpose is maintained for all subj ects, i.e., to control shock absorption and improve weight-bearing stability during the first phase of human walking. Physiological reliability of experimental results suggests the appropriateness of the present method in clinical applications.","PeriodicalId":106228,"journal":{"name":"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification of ankle muscle co-contraction during early stance by wavelet-based analysis of surface electromyographic signals\",\"authors\":\"F. Nardo, Martina Morano, S. Fioretti\",\"doi\":\"10.1109/MeMeA54994.2022.9856465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study involves Continuous Wavelet Transform (CWT) for the analysis of surface electromyographic (sEM G) signals, with the aim of assessing muscle co-contraction during early stance of healthy-subj ect walking. CWT approach allows computing the coscalogram function, a localized statistical assessment of cross-energy density between two signals. In this study, CWT coscalogram function between two sEMG signals from antagonist muscles is used to quantify muscular co-contraction activity. Daubechies of order 4 (factorization in 6 levels) is adopted as mother wavelet. Noise reduction in the sEMG signals is performed applying CWT denoising. Co-contractions between gastrocnemius lateralis and tibialis anterior are assessed on a set of experimental sEM G signals acquired in 15 able-bodied subjects during walking. Results show as the present CWT approach can provide a reliable assessment of co-contraction in early-stance phase of walking, highlighting that this co-contraction is short (< 1 0 ms) and very frequent. A large variability in the occurrence of the co-contraction is also detected, suggesting that each subject adopts her/his own modality of co-contraction. However, the same physiological purpose is maintained for all subj ects, i.e., to control shock absorption and improve weight-bearing stability during the first phase of human walking. Physiological reliability of experimental results suggests the appropriateness of the present method in clinical applications.\",\"PeriodicalId\":106228,\"journal\":{\"name\":\"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA54994.2022.9856465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA54994.2022.9856465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantification of ankle muscle co-contraction during early stance by wavelet-based analysis of surface electromyographic signals
The present study involves Continuous Wavelet Transform (CWT) for the analysis of surface electromyographic (sEM G) signals, with the aim of assessing muscle co-contraction during early stance of healthy-subj ect walking. CWT approach allows computing the coscalogram function, a localized statistical assessment of cross-energy density between two signals. In this study, CWT coscalogram function between two sEMG signals from antagonist muscles is used to quantify muscular co-contraction activity. Daubechies of order 4 (factorization in 6 levels) is adopted as mother wavelet. Noise reduction in the sEMG signals is performed applying CWT denoising. Co-contractions between gastrocnemius lateralis and tibialis anterior are assessed on a set of experimental sEM G signals acquired in 15 able-bodied subjects during walking. Results show as the present CWT approach can provide a reliable assessment of co-contraction in early-stance phase of walking, highlighting that this co-contraction is short (< 1 0 ms) and very frequent. A large variability in the occurrence of the co-contraction is also detected, suggesting that each subject adopts her/his own modality of co-contraction. However, the same physiological purpose is maintained for all subj ects, i.e., to control shock absorption and improve weight-bearing stability during the first phase of human walking. Physiological reliability of experimental results suggests the appropriateness of the present method in clinical applications.