{"title":"有或无失配的DMC可靠性函数的上界","authors":"A. Somekh-Baruch","doi":"10.1109/ITW55543.2023.10161625","DOIUrl":null,"url":null,"abstract":"We derive a new upper bound on the reliability function for channel coding over discrete memoryless channels. Our bounding technique relies on two main elements: (i) adding an auxiliary genie-receiver that reveals to the original receiver a list of codewords including the transmitted one, which satisfy a certain type property, and (ii) partitioning (most of) the list into subsets of codewords that satisfy a certain pairwise-symmetry property, which facilitates lower bounding of the average error probability by the pairwise error probability within a subset. We compare the obtained bound to the Shannon-Gallager-Berlekamp straight-line bound, the sphere-packing bound, and an amended version of Blahut’s bound. Our bound is shown to be at least as tight for all rates, with cases of stricter tightness in a certain range of low rates, compared to all three aforementioned bounds. Our derivation is performed in a unified manner which is valid for any rate, as well as for a wide class of additive decoding metrics, whenever the corresponding zero-error capacity is zero. We also present a dual form of the bound, and discuss a looser bound of a simpler form, which is analyzed for the case of the binary symmetric channel with maximum likelihood decoding.","PeriodicalId":439800,"journal":{"name":"2023 IEEE Information Theory Workshop (ITW)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Upper Bound on the Reliability Function of the DMC with or without Mismatch\",\"authors\":\"A. Somekh-Baruch\",\"doi\":\"10.1109/ITW55543.2023.10161625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a new upper bound on the reliability function for channel coding over discrete memoryless channels. Our bounding technique relies on two main elements: (i) adding an auxiliary genie-receiver that reveals to the original receiver a list of codewords including the transmitted one, which satisfy a certain type property, and (ii) partitioning (most of) the list into subsets of codewords that satisfy a certain pairwise-symmetry property, which facilitates lower bounding of the average error probability by the pairwise error probability within a subset. We compare the obtained bound to the Shannon-Gallager-Berlekamp straight-line bound, the sphere-packing bound, and an amended version of Blahut’s bound. Our bound is shown to be at least as tight for all rates, with cases of stricter tightness in a certain range of low rates, compared to all three aforementioned bounds. Our derivation is performed in a unified manner which is valid for any rate, as well as for a wide class of additive decoding metrics, whenever the corresponding zero-error capacity is zero. We also present a dual form of the bound, and discuss a looser bound of a simpler form, which is analyzed for the case of the binary symmetric channel with maximum likelihood decoding.\",\"PeriodicalId\":439800,\"journal\":{\"name\":\"2023 IEEE Information Theory Workshop (ITW)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW55543.2023.10161625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW55543.2023.10161625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Upper Bound on the Reliability Function of the DMC with or without Mismatch
We derive a new upper bound on the reliability function for channel coding over discrete memoryless channels. Our bounding technique relies on two main elements: (i) adding an auxiliary genie-receiver that reveals to the original receiver a list of codewords including the transmitted one, which satisfy a certain type property, and (ii) partitioning (most of) the list into subsets of codewords that satisfy a certain pairwise-symmetry property, which facilitates lower bounding of the average error probability by the pairwise error probability within a subset. We compare the obtained bound to the Shannon-Gallager-Berlekamp straight-line bound, the sphere-packing bound, and an amended version of Blahut’s bound. Our bound is shown to be at least as tight for all rates, with cases of stricter tightness in a certain range of low rates, compared to all three aforementioned bounds. Our derivation is performed in a unified manner which is valid for any rate, as well as for a wide class of additive decoding metrics, whenever the corresponding zero-error capacity is zero. We also present a dual form of the bound, and discuss a looser bound of a simpler form, which is analyzed for the case of the binary symmetric channel with maximum likelihood decoding.