GARCH-MIDAS框架中的时变波动率持久性

K. Stürmer
{"title":"GARCH-MIDAS框架中的时变波动率持久性","authors":"K. Stürmer","doi":"10.2139/ssrn.3258136","DOIUrl":null,"url":null,"abstract":"This paper presents a new volatility model with time-varying volatility persistence (TVP) that is governed by the dynamics of an explanatory variable. We extend the GJR-GARCH model by introducing a time-varying GARCH coefficient that is linked to the variable in a parsimonious way using MIDAS techniques. We refer to the model as the TVP-GARCH-MIDAS model. It nests the GJR-GARCH under the null that the variable has no explanatory power. We present a misspecification test based on the Lagrange multiplier principle and study its finite sample properties in a Monte-Carlo simulation. In an empirical application to the U.S. stock market, we show that volatility persistence is positively related to realized volatility and that it varies across the business cycle in a counter cyclical way. Finally, we assess forecasting gains of the new model in a direct forecasting comparison.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time-Varying Volatility Persistence in a GARCH-MIDAS Framework\",\"authors\":\"K. Stürmer\",\"doi\":\"10.2139/ssrn.3258136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new volatility model with time-varying volatility persistence (TVP) that is governed by the dynamics of an explanatory variable. We extend the GJR-GARCH model by introducing a time-varying GARCH coefficient that is linked to the variable in a parsimonious way using MIDAS techniques. We refer to the model as the TVP-GARCH-MIDAS model. It nests the GJR-GARCH under the null that the variable has no explanatory power. We present a misspecification test based on the Lagrange multiplier principle and study its finite sample properties in a Monte-Carlo simulation. In an empirical application to the U.S. stock market, we show that volatility persistence is positively related to realized volatility and that it varies across the business cycle in a counter cyclical way. Finally, we assess forecasting gains of the new model in a direct forecasting comparison.\",\"PeriodicalId\":239853,\"journal\":{\"name\":\"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3258136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3258136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的波动率模型,该模型具有时变波动率持久性(TVP),该模型由解释变量的动态控制。我们通过引入时变GARCH系数来扩展GJR-GARCH模型,该系数使用MIDAS技术以一种简洁的方式与变量相关联。我们把这个模型称为TVP-GARCH-MIDAS模型。它将GJR-GARCH嵌套在变量没有解释力的空值下。提出了一种基于拉格朗日乘法器原理的错配检验方法,并在蒙特卡罗模拟中研究了它的有限样本性质。在对美国股票市场的实证应用中,我们表明波动性持续性与实现波动性呈正相关,并且在整个商业周期中以反周期的方式变化。最后,通过直接预测对比,对新模型的预测效果进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Varying Volatility Persistence in a GARCH-MIDAS Framework
This paper presents a new volatility model with time-varying volatility persistence (TVP) that is governed by the dynamics of an explanatory variable. We extend the GJR-GARCH model by introducing a time-varying GARCH coefficient that is linked to the variable in a parsimonious way using MIDAS techniques. We refer to the model as the TVP-GARCH-MIDAS model. It nests the GJR-GARCH under the null that the variable has no explanatory power. We present a misspecification test based on the Lagrange multiplier principle and study its finite sample properties in a Monte-Carlo simulation. In an empirical application to the U.S. stock market, we show that volatility persistence is positively related to realized volatility and that it varies across the business cycle in a counter cyclical way. Finally, we assess forecasting gains of the new model in a direct forecasting comparison.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信