通过使用区块链的分布式远程认证来定义物联网环境中的信任

Uzair Javaid, M. Aman, B. Sikdar
{"title":"通过使用区块链的分布式远程认证来定义物联网环境中的信任","authors":"Uzair Javaid, M. Aman, B. Sikdar","doi":"10.1145/3397166.3412801","DOIUrl":null,"url":null,"abstract":"The constantly growing number of Internet of Things (IoT) devices and their resource-constrained nature makes them particularly vulnerable and increasingly attractive for exploitation by cyber criminals. Current estimates commonly reach the tens of billions for the number of connected 'things'. The heterogeneous capabilities of these devices serve as a motivation for resource sharing among them. However, for effective resource sharing, it is essential that trust be retained in the multitude of pervasive and diverse IoT devices. Remote attestation is a well-known technique used to build such trust. Thus, this paper proposes a blockchain based remote attestation protocol to establish trust between IoT devices. The blockchain offers a secure framework for device registration while the attestation is based on Physical Unclonable Functions (PUF). This combination of technologies results in a tamper resistant scheme with protection against physical and proxy attacks.","PeriodicalId":122577,"journal":{"name":"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Defining trust in IoT environments via distributed remote attestation using blockchain\",\"authors\":\"Uzair Javaid, M. Aman, B. Sikdar\",\"doi\":\"10.1145/3397166.3412801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The constantly growing number of Internet of Things (IoT) devices and their resource-constrained nature makes them particularly vulnerable and increasingly attractive for exploitation by cyber criminals. Current estimates commonly reach the tens of billions for the number of connected 'things'. The heterogeneous capabilities of these devices serve as a motivation for resource sharing among them. However, for effective resource sharing, it is essential that trust be retained in the multitude of pervasive and diverse IoT devices. Remote attestation is a well-known technique used to build such trust. Thus, this paper proposes a blockchain based remote attestation protocol to establish trust between IoT devices. The blockchain offers a secure framework for device registration while the attestation is based on Physical Unclonable Functions (PUF). This combination of technologies results in a tamper resistant scheme with protection against physical and proxy attacks.\",\"PeriodicalId\":122577,\"journal\":{\"name\":\"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397166.3412801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397166.3412801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

物联网(IoT)设备数量的不断增长及其资源的有限性使得它们特别容易受到网络犯罪分子的攻击和利用。据目前估计,联网“物”的数量通常达到数百亿。这些设备的异构功能是它们之间资源共享的动机。然而,为了有效地共享资源,在众多无处不在和多样化的物联网设备中保持信任至关重要。远程认证是一种众所周知的用于建立这种信任的技术。因此,本文提出了一种基于区块链的远程认证协议来建立物联网设备之间的信任。区块链为设备注册提供了一个安全的框架,而认证基于物理不可克隆功能(PUF)。这些技术的组合产生了一个防篡改方案,可以防止物理攻击和代理攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defining trust in IoT environments via distributed remote attestation using blockchain
The constantly growing number of Internet of Things (IoT) devices and their resource-constrained nature makes them particularly vulnerable and increasingly attractive for exploitation by cyber criminals. Current estimates commonly reach the tens of billions for the number of connected 'things'. The heterogeneous capabilities of these devices serve as a motivation for resource sharing among them. However, for effective resource sharing, it is essential that trust be retained in the multitude of pervasive and diverse IoT devices. Remote attestation is a well-known technique used to build such trust. Thus, this paper proposes a blockchain based remote attestation protocol to establish trust between IoT devices. The blockchain offers a secure framework for device registration while the attestation is based on Physical Unclonable Functions (PUF). This combination of technologies results in a tamper resistant scheme with protection against physical and proxy attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信