{"title":"基于SDAccel和Vivado HLS的FPGA频繁项集挖掘加速","authors":"V. Dang, K. Skadron","doi":"10.1109/ASAP.2017.7995279","DOIUrl":null,"url":null,"abstract":"Frequent itemset mining (FIM) is a widely-used data-mining technique for discovering sets of frequently-occurring items in large databases. However, FIM is highly time-consuming when datasets grow in size. FPGAs have shown great promise for accelerating computationally-intensive algorithms, but they are hard to use with traditional HDL-based design methods. The recent introduction of Xilinx SDAccel development environment for the C/C++/OpenCL languages allows developers to utilize FPGA's potential without long development periods and extensive hardware knowledge. This paper presents an optimized implementation of an FIM algorithm on FPGA using SDAccel and Vivado HLS. Performance and power consumption are measured with various datasets. When compared to state-of-the-art solutions, this implementation offers up to 3.2× speedup over a 6-core CPU, and has a better energy efficiency as compared with a GPU. Our preliminary results on the new XCKU115 FPGA are even more promising: they demonstrate a comparable performance with a state-of-the-art HDL FPGA implementation and better performance compared to the GPU.","PeriodicalId":405953,"journal":{"name":"2017 IEEE 28th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Acceleration of Frequent Itemset Mining on FPGA using SDAccel and Vivado HLS\",\"authors\":\"V. Dang, K. Skadron\",\"doi\":\"10.1109/ASAP.2017.7995279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequent itemset mining (FIM) is a widely-used data-mining technique for discovering sets of frequently-occurring items in large databases. However, FIM is highly time-consuming when datasets grow in size. FPGAs have shown great promise for accelerating computationally-intensive algorithms, but they are hard to use with traditional HDL-based design methods. The recent introduction of Xilinx SDAccel development environment for the C/C++/OpenCL languages allows developers to utilize FPGA's potential without long development periods and extensive hardware knowledge. This paper presents an optimized implementation of an FIM algorithm on FPGA using SDAccel and Vivado HLS. Performance and power consumption are measured with various datasets. When compared to state-of-the-art solutions, this implementation offers up to 3.2× speedup over a 6-core CPU, and has a better energy efficiency as compared with a GPU. Our preliminary results on the new XCKU115 FPGA are even more promising: they demonstrate a comparable performance with a state-of-the-art HDL FPGA implementation and better performance compared to the GPU.\",\"PeriodicalId\":405953,\"journal\":{\"name\":\"2017 IEEE 28th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 28th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2017.7995279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 28th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2017.7995279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
频繁项集挖掘(FIM)是一种广泛使用的数据挖掘技术,用于发现大型数据库中频繁出现的项集。然而,当数据集的规模增长时,FIM非常耗时。fpga在加速计算密集型算法方面显示出巨大的前景,但它们很难与传统的基于hdl的设计方法一起使用。最近针对C/ c++ /OpenCL语言推出的赛灵思SDAccel开发环境允许开发人员利用FPGA的潜力,而无需漫长的开发周期和广泛的硬件知识。本文利用SDAccel和Vivado HLS在FPGA上优化实现了一种FIM算法。使用不同的数据集测量性能和功耗。与最先进的解决方案相比,这种实现比6核CPU提供高达3.2倍的加速,并且与GPU相比具有更好的能源效率。我们在新的XCKU115 FPGA上的初步结果更有希望:它们展示了与最先进的HDL FPGA实现相当的性能,与GPU相比性能更好。
Acceleration of Frequent Itemset Mining on FPGA using SDAccel and Vivado HLS
Frequent itemset mining (FIM) is a widely-used data-mining technique for discovering sets of frequently-occurring items in large databases. However, FIM is highly time-consuming when datasets grow in size. FPGAs have shown great promise for accelerating computationally-intensive algorithms, but they are hard to use with traditional HDL-based design methods. The recent introduction of Xilinx SDAccel development environment for the C/C++/OpenCL languages allows developers to utilize FPGA's potential without long development periods and extensive hardware knowledge. This paper presents an optimized implementation of an FIM algorithm on FPGA using SDAccel and Vivado HLS. Performance and power consumption are measured with various datasets. When compared to state-of-the-art solutions, this implementation offers up to 3.2× speedup over a 6-core CPU, and has a better energy efficiency as compared with a GPU. Our preliminary results on the new XCKU115 FPGA are even more promising: they demonstrate a comparable performance with a state-of-the-art HDL FPGA implementation and better performance compared to the GPU.