刺破Riemann曲面特征变异的交点上同调

Mathieu Ballandras
{"title":"刺破Riemann曲面特征变异的交点上同调","authors":"Mathieu Ballandras","doi":"10.5802/jep.215","DOIUrl":null,"url":null,"abstract":"We study intersection cohomology of character varieties for punctured Riemann surfaces with prescribed monodromies around the punctures. Relying on previous result from Mellit [Mel17b] for semisimple monodromies we compute the intersection cohomology of character varieties with monodromies of any Jordan type. This proves the Poincaré polynomial specialization of a conjecture from Letellier [Let13].","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Intersection cohomology of character varieties for punctured Riemann surfaces\",\"authors\":\"Mathieu Ballandras\",\"doi\":\"10.5802/jep.215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study intersection cohomology of character varieties for punctured Riemann surfaces with prescribed monodromies around the punctures. Relying on previous result from Mellit [Mel17b] for semisimple monodromies we compute the intersection cohomology of character varieties with monodromies of any Jordan type. This proves the Poincaré polynomial specialization of a conjecture from Letellier [Let13].\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究了针尖周围有规定单点的刺破黎曼曲面的特征变异的交上同调性。根据Mellit [Mel17b]先前关于半简单单染色体的结果,我们计算了任意Jordan型单染色体的字符变异的交上同调。这证明了Letellier [Let13]猜想的poincar多项式专门化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intersection cohomology of character varieties for punctured Riemann surfaces
We study intersection cohomology of character varieties for punctured Riemann surfaces with prescribed monodromies around the punctures. Relying on previous result from Mellit [Mel17b] for semisimple monodromies we compute the intersection cohomology of character varieties with monodromies of any Jordan type. This proves the Poincaré polynomial specialization of a conjecture from Letellier [Let13].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信