投影低密度奇偶校验码中的小停止集

Yuichiro Fujiwara, Y. Tsunoda
{"title":"投影低密度奇偶校验码中的小停止集","authors":"Yuichiro Fujiwara, Y. Tsunoda","doi":"10.1109/ITW44776.2019.8989047","DOIUrl":null,"url":null,"abstract":"It is known that redundant parity-check equations can improve the performance of an LDPC code by reducing the number of harmful substructures in the parity-check matrix. However, it is a difficult problem to design a parity-check matrix in such a way that it avoids substructures that are known to be harmful to iterative decoding while keeping the number of redundant parity-check equations moderate and ensuring other desirable properties. We explicitly give redundant parity-check matrices for cyclic regular LDPC codes of length n and minimum distance $d \\sim \\sqrt{n}$ in which there are only n parity-check equations but no stopping sets of size d+1 or smaller except for those that correspond to the nonzero codewords of the smallest weight. We do this by showing that the well-known projective LDPC codes from the incidence matrices of projective planes PG(2, q) with q even have this property. This result may give insight into how the small number of redundant parity-check equations in the geometric LDPC codes may be contributing to the good performance reported in the literature. We also give a slightly improved upper bound on the size of a smallest generic erasure correcting set.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small stopping sets in projective low-density parity-check codes\",\"authors\":\"Yuichiro Fujiwara, Y. Tsunoda\",\"doi\":\"10.1109/ITW44776.2019.8989047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that redundant parity-check equations can improve the performance of an LDPC code by reducing the number of harmful substructures in the parity-check matrix. However, it is a difficult problem to design a parity-check matrix in such a way that it avoids substructures that are known to be harmful to iterative decoding while keeping the number of redundant parity-check equations moderate and ensuring other desirable properties. We explicitly give redundant parity-check matrices for cyclic regular LDPC codes of length n and minimum distance $d \\\\sim \\\\sqrt{n}$ in which there are only n parity-check equations but no stopping sets of size d+1 or smaller except for those that correspond to the nonzero codewords of the smallest weight. We do this by showing that the well-known projective LDPC codes from the incidence matrices of projective planes PG(2, q) with q even have this property. This result may give insight into how the small number of redundant parity-check equations in the geometric LDPC codes may be contributing to the good performance reported in the literature. We also give a slightly improved upper bound on the size of a smallest generic erasure correcting set.\",\"PeriodicalId\":214379,\"journal\":{\"name\":\"2019 IEEE Information Theory Workshop (ITW)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW44776.2019.8989047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

已知冗余校验方程可以通过减少校验矩阵中有害子结构的数目来提高LDPC码的性能。然而,设计一个奇偶校验矩阵是一个困难的问题,它既能避免已知对迭代解码有害的子结构,又能保持冗余奇偶校验方程的数量适中,并确保其他理想的性质。我们明确地给出了长度为n、距离为$d \sim \sqrt{n}$的循环正则LDPC码的冗余校验矩阵,其中只有n个校验方程,除了权值最小的非零码字外,没有大小为d+1或更小的停止集。我们通过证明从具有q的射影平面PG(2, q)的关联矩阵得到的著名的射影LDPC码甚至具有这个性质来做到这一点。这一结果可以深入了解几何LDPC码中的少量冗余奇偶校验方程如何有助于文献中报道的良好性能。我们也给出了一个稍微改进的最小一般擦除校正集大小的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small stopping sets in projective low-density parity-check codes
It is known that redundant parity-check equations can improve the performance of an LDPC code by reducing the number of harmful substructures in the parity-check matrix. However, it is a difficult problem to design a parity-check matrix in such a way that it avoids substructures that are known to be harmful to iterative decoding while keeping the number of redundant parity-check equations moderate and ensuring other desirable properties. We explicitly give redundant parity-check matrices for cyclic regular LDPC codes of length n and minimum distance $d \sim \sqrt{n}$ in which there are only n parity-check equations but no stopping sets of size d+1 or smaller except for those that correspond to the nonzero codewords of the smallest weight. We do this by showing that the well-known projective LDPC codes from the incidence matrices of projective planes PG(2, q) with q even have this property. This result may give insight into how the small number of redundant parity-check equations in the geometric LDPC codes may be contributing to the good performance reported in the literature. We also give a slightly improved upper bound on the size of a smallest generic erasure correcting set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信