使用旋转地标的变形场插值

Bilge Karaçali
{"title":"使用旋转地标的变形场插值","authors":"Bilge Karaçali","doi":"10.1109/BIYOMUT.2010.5479857","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel method for landmark-based deformation field interpolation that incorporates the rotation information for use in curved medical image registration applications. To this end, each Cartesian component of the interpolated deformation field was modeled by a mixture of Gaussian radial basis functions. The mixture coefficients were identified by optimizing an energy functional that seeks to match the landmark positions as well as the orientations of their neighborhoods. Optimization of this functional was carried out via a gradient descent strategy using the closed-form expressions of the partial derivatives with respect to the Gaussian radial basis function coefficients. In the experiments, grater accuracy was observed in the estimation of the unknown deformation fields when the rotation information was incorporated in the interpolation. These results indicate that the proposed scheme can achieve greater accuracy in deformation field interpolation, especially in deformable alignment of multimodality medical images for which the landmarks have to be matched by taking into account the proper orientations of their neighborhoods.","PeriodicalId":180275,"journal":{"name":"2010 15th National Biomedical Engineering Meeting","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation field interpolation using rotational landmarks\",\"authors\":\"Bilge Karaçali\",\"doi\":\"10.1109/BIYOMUT.2010.5479857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel method for landmark-based deformation field interpolation that incorporates the rotation information for use in curved medical image registration applications. To this end, each Cartesian component of the interpolated deformation field was modeled by a mixture of Gaussian radial basis functions. The mixture coefficients were identified by optimizing an energy functional that seeks to match the landmark positions as well as the orientations of their neighborhoods. Optimization of this functional was carried out via a gradient descent strategy using the closed-form expressions of the partial derivatives with respect to the Gaussian radial basis function coefficients. In the experiments, grater accuracy was observed in the estimation of the unknown deformation fields when the rotation information was incorporated in the interpolation. These results indicate that the proposed scheme can achieve greater accuracy in deformation field interpolation, especially in deformable alignment of multimodality medical images for which the landmarks have to be matched by taking into account the proper orientations of their neighborhoods.\",\"PeriodicalId\":180275,\"journal\":{\"name\":\"2010 15th National Biomedical Engineering Meeting\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th National Biomedical Engineering Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIYOMUT.2010.5479857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2010.5479857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新的基于地标的变形场插值方法,该方法结合了旋转信息,用于弯曲医学图像配准应用。为此,插值变形场的每个笛卡尔分量由高斯径向基函数混合建模。混合系数是通过优化能量函数来确定的,该函数旨在匹配地标位置以及社区的方向。利用高斯径向基函数系数的偏导数的封闭表达式,通过梯度下降策略对该泛函进行优化。实验表明,在插值中加入旋转信息后,对未知变形场的估计精度更高。这些结果表明,该方法在形变场插值中具有较高的精度,特别是在多模态医学图像的形变对齐中,需要考虑其邻域的适当方向来匹配地标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformation field interpolation using rotational landmarks
In this paper, we present a novel method for landmark-based deformation field interpolation that incorporates the rotation information for use in curved medical image registration applications. To this end, each Cartesian component of the interpolated deformation field was modeled by a mixture of Gaussian radial basis functions. The mixture coefficients were identified by optimizing an energy functional that seeks to match the landmark positions as well as the orientations of their neighborhoods. Optimization of this functional was carried out via a gradient descent strategy using the closed-form expressions of the partial derivatives with respect to the Gaussian radial basis function coefficients. In the experiments, grater accuracy was observed in the estimation of the unknown deformation fields when the rotation information was incorporated in the interpolation. These results indicate that the proposed scheme can achieve greater accuracy in deformation field interpolation, especially in deformable alignment of multimodality medical images for which the landmarks have to be matched by taking into account the proper orientations of their neighborhoods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信