3GPP NB-IoT中的边缘机器学习:架构、应用和演示

D. Vukobratović, Milan Lukić, I. Mezei, D. Bajović, Dragan Danilovic, Milos Savic, Zarko Bodroski, S. Skrbic, D. Jakovetić
{"title":"3GPP NB-IoT中的边缘机器学习:架构、应用和演示","authors":"D. Vukobratović, Milan Lukić, I. Mezei, D. Bajović, Dragan Danilovic, Milos Savic, Zarko Bodroski, S. Skrbic, D. Jakovetić","doi":"10.23919/eusipco55093.2022.9909793","DOIUrl":null,"url":null,"abstract":"The emergence of cellular Internet of Things (IoT) standards such as NB-IoT brings novel opportunities for low-cost wide-area IoT applications. Augmenting massive IoT deployments with Machine Learning (ML) algorithms deployed at the edge enables design and implementation of a novel intelligent IoT services. In this paper, we present an architectural outlook and an overview of our recent activities that target integration of ML modules into the cellular IoT architecture. The three-layer architecture considered in this paper embeds ML modules at the edge devices (ML-EDGE), within the core network (ML-FOG) and at the cloud servers (ML-CLOUD), thus balancing between the system response time and accuracy. We discuss alignment of the proposed architecture with ongoing trends in 3GPP architecture evolution. We design, integrate and demonstrate edge ML use cases relying on our real-world deployment of about 150 static and mobile nodes integrated into the NB-IoT network.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge Machine Learning in 3GPP NB-IoT: Architecture, Applications and Demonstration\",\"authors\":\"D. Vukobratović, Milan Lukić, I. Mezei, D. Bajović, Dragan Danilovic, Milos Savic, Zarko Bodroski, S. Skrbic, D. Jakovetić\",\"doi\":\"10.23919/eusipco55093.2022.9909793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of cellular Internet of Things (IoT) standards such as NB-IoT brings novel opportunities for low-cost wide-area IoT applications. Augmenting massive IoT deployments with Machine Learning (ML) algorithms deployed at the edge enables design and implementation of a novel intelligent IoT services. In this paper, we present an architectural outlook and an overview of our recent activities that target integration of ML modules into the cellular IoT architecture. The three-layer architecture considered in this paper embeds ML modules at the edge devices (ML-EDGE), within the core network (ML-FOG) and at the cloud servers (ML-CLOUD), thus balancing between the system response time and accuracy. We discuss alignment of the proposed architecture with ongoing trends in 3GPP architecture evolution. We design, integrate and demonstrate edge ML use cases relying on our real-world deployment of about 150 static and mobile nodes integrated into the NB-IoT network.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

蜂窝物联网(IoT)标准(如NB-IoT)的出现为低成本广域物联网应用带来了新的机遇。通过在边缘部署机器学习(ML)算法来增强大规模物联网部署,可以设计和实施新型智能物联网服务。在本文中,我们提出了一个架构展望,并概述了我们最近的活动,目标是将ML模块集成到蜂窝物联网架构中。本文考虑的三层架构将机器学习模块嵌入边缘设备(ML- edge)、核心网络(ML- fog)和云服务器(ML- cloud),从而在系统响应时间和准确性之间取得平衡。我们讨论了拟议的体系结构与3GPP体系结构演进的持续趋势的一致性。我们设计、集成和演示边缘机器学习用例,依赖于我们在NB-IoT网络中集成的约150个静态和移动节点的实际部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge Machine Learning in 3GPP NB-IoT: Architecture, Applications and Demonstration
The emergence of cellular Internet of Things (IoT) standards such as NB-IoT brings novel opportunities for low-cost wide-area IoT applications. Augmenting massive IoT deployments with Machine Learning (ML) algorithms deployed at the edge enables design and implementation of a novel intelligent IoT services. In this paper, we present an architectural outlook and an overview of our recent activities that target integration of ML modules into the cellular IoT architecture. The three-layer architecture considered in this paper embeds ML modules at the edge devices (ML-EDGE), within the core network (ML-FOG) and at the cloud servers (ML-CLOUD), thus balancing between the system response time and accuracy. We discuss alignment of the proposed architecture with ongoing trends in 3GPP architecture evolution. We design, integrate and demonstrate edge ML use cases relying on our real-world deployment of about 150 static and mobile nodes integrated into the NB-IoT network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信